[eval] Add ScienceAgentBench. (#4645)

Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
This commit is contained in:
Ziru "Ron" Chen 2024-10-31 14:30:55 -04:00 committed by GitHub
parent 9442e4f9e3
commit db4e1dbbec
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 469 additions and 3 deletions

1
.gitignore vendored
View File

@ -174,6 +174,7 @@ evaluation/bird/data
evaluation/gaia/data
evaluation/gorilla/data
evaluation/toolqa/data
evaluation/scienceagentbench/benchmark
# frontend

View File

@ -0,0 +1,17 @@
FROM python:3.11-bookworm
# For OpenHands agents to explore the dataset directories, please download the full benchmark [here](https://buckeyemailosu-my.sharepoint.com/:u:/g/personal/chen_8336_buckeyemail_osu_edu/EQuA6uJ3CtRHvRfZ2GiN1tYBRVJE4DSUD10MW61fr7HuSQ?e=sCBegG) and unzip it with password `scienceagentbench`.
# **Please DO NOT redistribute the unzipped data files online.**
# It will download a benchmark.zip file to the current directory.
# unzip it and put the benchmark folder under evaluation/scienceagentbench/
RUN mkdir -p /benchmark
COPY benchmark /benchmark
RUN mkdir -p /workspace
WORKDIR /workspace
# pushd evaluation/scienceagentbench
# docker build -t xingyaoww/openhands-eval-scienceagentbench .
# popd

View File

@ -0,0 +1,25 @@
FROM mambaorg/micromamba:debian12
USER root
# For https://github.com/OSU-NLP-Group/ScienceAgentBench/tree/main?tab=readme-ov-file#code-generation-with-agents
RUN micromamba create -n sci-agent-eval python=3.10 pip setuptools wheel
RUN micromamba run -n sci-agent-eval pip install pip-tools
RUN mkdir -p /workspace
WORKDIR /workspace
RUN apt-get update && apt-get install -y git
RUN git clone https://github.com/OSU-NLP-Group/ScienceAgentBench.git /workspace/
RUN git checkout 4eddc7db6449a5ade3e37285747c8b208cd54ce7
RUN micromamba create -n sci-agent python=3.10 pip setuptools wheel
RUN micromamba run -n sci-agent pip install -r requirements.txt
# Replace all occurence of conda with micromamba under the /workspace
RUN find ./ -type f -exec sed -i 's/conda/micromamba/g' {} \;
# pushd evaluation/scienceagentbench
# docker build -t xingyaoww/openhands-eval-scienceagentbench-evaluator -f Dockerfile.evaluator .
# popd

View File

@ -0,0 +1,54 @@
# ScienceAgentBench Evaluation with OpenHands
This folder contains the evaluation harness for [ScienceAgentBench](https://osu-nlp-group.github.io/ScienceAgentBench/) (paper: https://arxiv.org/abs/2410.05080).
## Setup Environment and LLM Configuration
Please follow instruction [here](../README.md#setup) to setup your local development environment and LLM.
## Setup ScienceAgentBench
To prevent benchmark data contamination, we only provide the annotation sheet on [Huggingface](https://huggingface.co/datasets/osunlp/ScienceAgentBench), which includes all necessary *inputs* to run an agent.
## Run Inference on ScienceAgentBench
```bash
./evaluation/scienceagentbench/scripts/run_infer.sh [model_config] [git-version] [use_knowledge] [agent] [eval_limit] [max_iter] [num_workers] [dataset] [dataset_split]
# Example
./evaluation/scienceagentbench/scripts/run_infer.sh llm.eval_gpt4o 0.9.3
```
where `model_config` is mandatory, and the rest are optional.
- `model_config`, e.g. `eval_gpt4_1106_preview`, is the config group name for your
LLM settings, as defined in your `config.toml`.
- `git-version`, e.g. `HEAD`, is the git commit hash of the OpenHands version you would
like to evaluate. It could also be a release tag like `0.6.2`.
- `use_knowledge`, e.g. `true`, specifies whether allowing the agent to use expert-provided knowledge as additional input or not. By default, it is set to `false`.
- `agent`, e.g. `CodeActAgent`, is the name of the agent for benchmarks, defaulting
to `CodeActAgent`.
- `eval_limit`, e.g. `10`, limits the evaluation to the first `eval_limit` instances. By
default, the script evaluates the entire SWE-bench_Lite test set (300 issues). Note:
in order to use `eval_limit`, you must also set `agent`.
- `max_iter`, e.g. `20`, is the maximum number of iterations for the agent to run. By
default, it is set to 30.
- `num_workers`, e.g. `3`, is the number of parallel workers to run the evaluation. By
default, it is set to 1.
## Evaluate Generated Programs
### Extract Necessary Information from OpenHands Log
After the inference is completed, you may use the following command to extract necessary information from the output log for evaluation:
```bash
python post_proc.py [log_fname]
```
- `log_fname`, e.g. `evaluation/.../output.jsonl`, is the automatically saved trajectory log of an OpenHands agent.
Output will be write to e.g. `evaluation/.../output.converted.jsonl`
### Run evaluation
Please follow the steps [here](https://github.com/OSU-NLP-Group/ScienceAgentBench/tree/main?tab=readme-ov-file#evaluation-of-generated-code) to evaluate the generated programs.

View File

@ -0,0 +1,30 @@
import json
from argparse import ArgumentParser
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument(
'log_fname',
type=str,
)
args = parser.parse_args()
fname = args.log_fname
out_fname = args.log_fname.replace('.jsonl', '.converted.jsonl')
log = [json.loads(line) for line in open(fname)]
simple_log = [
json.dumps(
{
'instance_id': ex['instance_id'],
'instruction': ex['instruction'],
'test_result': ex['test_result'],
'cost': ex['metrics']['accumulated_cost'],
}
)
for ex in log
]
with open(out_fname, 'w+', encoding='utf-8') as f:
f.write('\n'.join(simple_log))

View File

@ -0,0 +1,292 @@
import asyncio
import os
from typing import Any
import pandas as pd
from datasets import load_dataset
from tqdm import tqdm
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')
def format_task_dict(example, use_knowledge):
task = {
'instance_id': example['instance_id'],
'task_inst': example['task_inst'],
'dataset_path': '/benchmark/datasets/'
+ example['dataset_folder_tree'].split('\n')[0][4:],
'dataset_folder_tree': example['dataset_folder_tree'],
'dataset_preview': example['dataset_preview'],
'pred_program_name': 'pred_' + example['gold_program_name'],
}
if use_knowledge:
task['task_inst'] += '\n' + str(example['domain_knowledge'])
return task
def get_config(
metadata: EvalMetadata,
instance_id: str,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime=os.environ.get('RUNTIME', 'eventstream'),
max_budget_per_task=4,
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
enable_auto_lint=True,
use_host_network=False,
timeout=300,
api_key=os.environ.get('ALLHANDS_API_KEY', None),
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
keep_remote_runtime_alive=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
if metadata.llm_config.log_completions:
metadata.llm_config.log_completions_folder = os.path.join(
metadata.eval_output_dir, 'llm_completions', instance_id
)
logger.info(
f'Logging LLM completions for instance {instance_id} to '
f'{metadata.llm_config.log_completions_folder}'
)
return config
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set up workspace directories
action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='mkdir -p /workspace/pred_results')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')
# Copy the dataset to the workspace
dataset_dir = os.path.join(
LOCAL_DATASET_PATH,
'datasets',
dataset_name,
)
runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)
# Check the dataset exists
action = CmdRunAction(
command='cd /workspace/benchmark/datasets && ls',
keep_prompt=False,
)
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert obs.exit_code == 0
assert dataset_name in obs.content
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def complete_runtime(
runtime: Runtime,
instance: pd.Series,
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
obs: CmdOutputObservation
test_result = {}
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(
command=f'cat pred_programs/{instance.pred_program_name}',
keep_prompt=False,
)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
if obs.exit_code == 0:
test_result = {'program': obs.content}
else:
test_result = {'program': 'ERROR'}
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
return test_result
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
instance_id = instance.instance_id.replace('/', '__')
config = get_config(metadata, instance_id)
# Set up the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance_id}.')
instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.
Here's the user request you need to work on:
{instance.task_inst}
You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:
```
{instance.dataset_folder_tree}
```
Here are some helpful previews for the dataset file(s):
{instance.dataset_preview}
Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.
Then, please run the program to check and fix any errors.
Please do NOT run the program in the background.
If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.
"""
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
# ======= Attempt to evaluate the agent's edits =======
test_result = complete_runtime(runtime, instance)
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = state.history.compatibility_for_eval_history_pairs()
# Save the output
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--use_knowledge',
type=str,
default='false',
choices=['true', 'false'],
help='use expert-provided knowledge or not',
)
args, _ = parser.parse_known_args()
sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')
dataset_processed = []
for example in tqdm(sab_dataset):
dataset_processed.append(
format_task_dict(example, args.use_knowledge == 'true')
)
dataset = pd.DataFrame(dataset_processed)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
'ScienceAgentBench',
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
dataset['instance_id'] = dataset['instance_id'].apply(str)
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)

View File

@ -0,0 +1,49 @@
#!/bin/bash
set -eo pipefail
source "evaluation/utils/version_control.sh"
MODEL_CONFIG=$1
COMMIT_HASH=$2
USE_KNOWLEDGE=$3
AGENT=$4
EVAL_LIMIT=$5
NUM_WORKERS=$6
if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
if [ -z "$USE_KNOWLEDGE" ]; then
echo "Use knowledge not specified, use default False"
USE_KNOWLEDGE=false
fi
get_agent_version
echo "AGENT: $AGENT"
echo "AGENT_VERSION: $AGENT_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
COMMAND="poetry run python evaluation/scienceagentbench/run_infer.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--use_knowledge $USE_KNOWLEDGE \
--max-iterations 30 \
--eval-num-workers $NUM_WORKERS \
--eval-note $AGENT_VERSION" \
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
# Run the command
eval $COMMAND

View File

@ -4,9 +4,7 @@ import tarfile
from glob import glob
from e2b import Sandbox as E2BSandbox
from e2b.sandbox.exception import (
TimeoutException,
)
from e2b.sandbox.exception import TimeoutException
from openhands.core.config import SandboxConfig
from openhands.core.logger import openhands_logger as logger