mirror of
https://github.com/OpenHands/OpenHands.git
synced 2025-12-26 05:48:36 +08:00
[eval] Add ScienceAgentBench. (#4645)
Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
This commit is contained in:
parent
9442e4f9e3
commit
db4e1dbbec
1
.gitignore
vendored
1
.gitignore
vendored
@ -174,6 +174,7 @@ evaluation/bird/data
|
||||
evaluation/gaia/data
|
||||
evaluation/gorilla/data
|
||||
evaluation/toolqa/data
|
||||
evaluation/scienceagentbench/benchmark
|
||||
|
||||
# frontend
|
||||
|
||||
|
||||
17
evaluation/scienceagentbench/Dockerfile
Normal file
17
evaluation/scienceagentbench/Dockerfile
Normal file
@ -0,0 +1,17 @@
|
||||
FROM python:3.11-bookworm
|
||||
|
||||
|
||||
# For OpenHands agents to explore the dataset directories, please download the full benchmark [here](https://buckeyemailosu-my.sharepoint.com/:u:/g/personal/chen_8336_buckeyemail_osu_edu/EQuA6uJ3CtRHvRfZ2GiN1tYBRVJE4DSUD10MW61fr7HuSQ?e=sCBegG) and unzip it with password `scienceagentbench`.
|
||||
# **Please DO NOT redistribute the unzipped data files online.**
|
||||
# It will download a benchmark.zip file to the current directory.
|
||||
# unzip it and put the benchmark folder under evaluation/scienceagentbench/
|
||||
|
||||
RUN mkdir -p /benchmark
|
||||
COPY benchmark /benchmark
|
||||
|
||||
RUN mkdir -p /workspace
|
||||
WORKDIR /workspace
|
||||
|
||||
# pushd evaluation/scienceagentbench
|
||||
# docker build -t xingyaoww/openhands-eval-scienceagentbench .
|
||||
# popd
|
||||
25
evaluation/scienceagentbench/Dockerfile.evaluator
Normal file
25
evaluation/scienceagentbench/Dockerfile.evaluator
Normal file
@ -0,0 +1,25 @@
|
||||
FROM mambaorg/micromamba:debian12
|
||||
|
||||
USER root
|
||||
# For https://github.com/OSU-NLP-Group/ScienceAgentBench/tree/main?tab=readme-ov-file#code-generation-with-agents
|
||||
|
||||
RUN micromamba create -n sci-agent-eval python=3.10 pip setuptools wheel
|
||||
RUN micromamba run -n sci-agent-eval pip install pip-tools
|
||||
|
||||
RUN mkdir -p /workspace
|
||||
WORKDIR /workspace
|
||||
|
||||
RUN apt-get update && apt-get install -y git
|
||||
|
||||
RUN git clone https://github.com/OSU-NLP-Group/ScienceAgentBench.git /workspace/
|
||||
RUN git checkout 4eddc7db6449a5ade3e37285747c8b208cd54ce7
|
||||
|
||||
RUN micromamba create -n sci-agent python=3.10 pip setuptools wheel
|
||||
RUN micromamba run -n sci-agent pip install -r requirements.txt
|
||||
|
||||
# Replace all occurence of conda with micromamba under the /workspace
|
||||
RUN find ./ -type f -exec sed -i 's/conda/micromamba/g' {} \;
|
||||
|
||||
# pushd evaluation/scienceagentbench
|
||||
# docker build -t xingyaoww/openhands-eval-scienceagentbench-evaluator -f Dockerfile.evaluator .
|
||||
# popd
|
||||
54
evaluation/scienceagentbench/README.md
Normal file
54
evaluation/scienceagentbench/README.md
Normal file
@ -0,0 +1,54 @@
|
||||
# ScienceAgentBench Evaluation with OpenHands
|
||||
|
||||
This folder contains the evaluation harness for [ScienceAgentBench](https://osu-nlp-group.github.io/ScienceAgentBench/) (paper: https://arxiv.org/abs/2410.05080).
|
||||
|
||||
## Setup Environment and LLM Configuration
|
||||
|
||||
Please follow instruction [here](../README.md#setup) to setup your local development environment and LLM.
|
||||
|
||||
## Setup ScienceAgentBench
|
||||
|
||||
To prevent benchmark data contamination, we only provide the annotation sheet on [Huggingface](https://huggingface.co/datasets/osunlp/ScienceAgentBench), which includes all necessary *inputs* to run an agent.
|
||||
|
||||
## Run Inference on ScienceAgentBench
|
||||
|
||||
```bash
|
||||
./evaluation/scienceagentbench/scripts/run_infer.sh [model_config] [git-version] [use_knowledge] [agent] [eval_limit] [max_iter] [num_workers] [dataset] [dataset_split]
|
||||
|
||||
# Example
|
||||
./evaluation/scienceagentbench/scripts/run_infer.sh llm.eval_gpt4o 0.9.3
|
||||
```
|
||||
|
||||
where `model_config` is mandatory, and the rest are optional.
|
||||
|
||||
- `model_config`, e.g. `eval_gpt4_1106_preview`, is the config group name for your
|
||||
LLM settings, as defined in your `config.toml`.
|
||||
- `git-version`, e.g. `HEAD`, is the git commit hash of the OpenHands version you would
|
||||
like to evaluate. It could also be a release tag like `0.6.2`.
|
||||
- `use_knowledge`, e.g. `true`, specifies whether allowing the agent to use expert-provided knowledge as additional input or not. By default, it is set to `false`.
|
||||
- `agent`, e.g. `CodeActAgent`, is the name of the agent for benchmarks, defaulting
|
||||
to `CodeActAgent`.
|
||||
- `eval_limit`, e.g. `10`, limits the evaluation to the first `eval_limit` instances. By
|
||||
default, the script evaluates the entire SWE-bench_Lite test set (300 issues). Note:
|
||||
in order to use `eval_limit`, you must also set `agent`.
|
||||
- `max_iter`, e.g. `20`, is the maximum number of iterations for the agent to run. By
|
||||
default, it is set to 30.
|
||||
- `num_workers`, e.g. `3`, is the number of parallel workers to run the evaluation. By
|
||||
default, it is set to 1.
|
||||
|
||||
## Evaluate Generated Programs
|
||||
|
||||
### Extract Necessary Information from OpenHands Log
|
||||
|
||||
After the inference is completed, you may use the following command to extract necessary information from the output log for evaluation:
|
||||
|
||||
```bash
|
||||
python post_proc.py [log_fname]
|
||||
```
|
||||
- `log_fname`, e.g. `evaluation/.../output.jsonl`, is the automatically saved trajectory log of an OpenHands agent.
|
||||
|
||||
Output will be write to e.g. `evaluation/.../output.converted.jsonl`
|
||||
|
||||
### Run evaluation
|
||||
|
||||
Please follow the steps [here](https://github.com/OSU-NLP-Group/ScienceAgentBench/tree/main?tab=readme-ov-file#evaluation-of-generated-code) to evaluate the generated programs.
|
||||
30
evaluation/scienceagentbench/post_proc.py
Normal file
30
evaluation/scienceagentbench/post_proc.py
Normal file
@ -0,0 +1,30 @@
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument(
|
||||
'log_fname',
|
||||
type=str,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
fname = args.log_fname
|
||||
out_fname = args.log_fname.replace('.jsonl', '.converted.jsonl')
|
||||
|
||||
log = [json.loads(line) for line in open(fname)]
|
||||
|
||||
simple_log = [
|
||||
json.dumps(
|
||||
{
|
||||
'instance_id': ex['instance_id'],
|
||||
'instruction': ex['instruction'],
|
||||
'test_result': ex['test_result'],
|
||||
'cost': ex['metrics']['accumulated_cost'],
|
||||
}
|
||||
)
|
||||
for ex in log
|
||||
]
|
||||
|
||||
with open(out_fname, 'w+', encoding='utf-8') as f:
|
||||
f.write('\n'.join(simple_log))
|
||||
292
evaluation/scienceagentbench/run_infer.py
Normal file
292
evaluation/scienceagentbench/run_infer.py
Normal file
@ -0,0 +1,292 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
import pandas as pd
|
||||
from datasets import load_dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from evaluation.utils.shared import (
|
||||
EvalMetadata,
|
||||
EvalOutput,
|
||||
codeact_user_response,
|
||||
make_metadata,
|
||||
prepare_dataset,
|
||||
reset_logger_for_multiprocessing,
|
||||
run_evaluation,
|
||||
)
|
||||
from openhands.controller.state.state import State
|
||||
from openhands.core.config import (
|
||||
AppConfig,
|
||||
SandboxConfig,
|
||||
get_llm_config_arg,
|
||||
get_parser,
|
||||
)
|
||||
from openhands.core.logger import openhands_logger as logger
|
||||
from openhands.core.main import create_runtime, run_controller
|
||||
from openhands.events.action import CmdRunAction, MessageAction
|
||||
from openhands.events.observation import CmdOutputObservation
|
||||
from openhands.runtime.base import Runtime
|
||||
from openhands.utils.async_utils import call_async_from_sync
|
||||
|
||||
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
||||
'CodeActAgent': codeact_user_response,
|
||||
}
|
||||
|
||||
LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')
|
||||
|
||||
|
||||
def format_task_dict(example, use_knowledge):
|
||||
task = {
|
||||
'instance_id': example['instance_id'],
|
||||
'task_inst': example['task_inst'],
|
||||
'dataset_path': '/benchmark/datasets/'
|
||||
+ example['dataset_folder_tree'].split('\n')[0][4:],
|
||||
'dataset_folder_tree': example['dataset_folder_tree'],
|
||||
'dataset_preview': example['dataset_preview'],
|
||||
'pred_program_name': 'pred_' + example['gold_program_name'],
|
||||
}
|
||||
|
||||
if use_knowledge:
|
||||
task['task_inst'] += '\n' + str(example['domain_knowledge'])
|
||||
|
||||
return task
|
||||
|
||||
|
||||
def get_config(
|
||||
metadata: EvalMetadata,
|
||||
instance_id: str,
|
||||
) -> AppConfig:
|
||||
config = AppConfig(
|
||||
default_agent=metadata.agent_class,
|
||||
run_as_openhands=False,
|
||||
runtime=os.environ.get('RUNTIME', 'eventstream'),
|
||||
max_budget_per_task=4,
|
||||
max_iterations=metadata.max_iterations,
|
||||
sandbox=SandboxConfig(
|
||||
base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
|
||||
enable_auto_lint=True,
|
||||
use_host_network=False,
|
||||
timeout=300,
|
||||
api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
||||
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
||||
keep_remote_runtime_alive=False,
|
||||
),
|
||||
# do not mount workspace
|
||||
workspace_base=None,
|
||||
workspace_mount_path=None,
|
||||
)
|
||||
config.set_llm_config(metadata.llm_config)
|
||||
if metadata.llm_config.log_completions:
|
||||
metadata.llm_config.log_completions_folder = os.path.join(
|
||||
metadata.eval_output_dir, 'llm_completions', instance_id
|
||||
)
|
||||
logger.info(
|
||||
f'Logging LLM completions for instance {instance_id} to '
|
||||
f'{metadata.llm_config.log_completions_folder}'
|
||||
)
|
||||
return config
|
||||
|
||||
|
||||
def initialize_runtime(
|
||||
runtime: Runtime,
|
||||
instance: pd.Series, # this argument is not required
|
||||
):
|
||||
"""Initialize the runtime for the agent.
|
||||
|
||||
This function is called before the runtime is used to run the agent.
|
||||
"""
|
||||
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
||||
obs: CmdOutputObservation
|
||||
|
||||
# Set up workspace directories
|
||||
action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
|
||||
logger.info(action, extra={'msg_type': 'ACTION'})
|
||||
obs = runtime.run_action(action)
|
||||
assert obs.exit_code == 0
|
||||
|
||||
action = CmdRunAction(command='mkdir -p /workspace/pred_results')
|
||||
logger.info(action, extra={'msg_type': 'ACTION'})
|
||||
obs = runtime.run_action(action)
|
||||
assert obs.exit_code == 0
|
||||
|
||||
dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')
|
||||
|
||||
# Copy the dataset to the workspace
|
||||
dataset_dir = os.path.join(
|
||||
LOCAL_DATASET_PATH,
|
||||
'datasets',
|
||||
dataset_name,
|
||||
)
|
||||
runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)
|
||||
|
||||
# Check the dataset exists
|
||||
action = CmdRunAction(
|
||||
command='cd /workspace/benchmark/datasets && ls',
|
||||
keep_prompt=False,
|
||||
)
|
||||
obs = runtime.run_action(action)
|
||||
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
||||
assert obs.exit_code == 0
|
||||
assert dataset_name in obs.content
|
||||
|
||||
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
||||
|
||||
|
||||
def complete_runtime(
|
||||
runtime: Runtime,
|
||||
instance: pd.Series,
|
||||
) -> dict[str, Any]:
|
||||
"""Complete the runtime for the agent.
|
||||
|
||||
This function is called before the runtime is used to run the agent.
|
||||
If you need to do something in the sandbox to get the correctness metric after
|
||||
the agent has run, modify this function.
|
||||
"""
|
||||
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
||||
obs: CmdOutputObservation
|
||||
|
||||
test_result = {}
|
||||
|
||||
action = CmdRunAction(command='cd /workspace')
|
||||
logger.info(action, extra={'msg_type': 'ACTION'})
|
||||
obs = runtime.run_action(action)
|
||||
|
||||
assert obs.exit_code == 0
|
||||
|
||||
action = CmdRunAction(
|
||||
command=f'cat pred_programs/{instance.pred_program_name}',
|
||||
keep_prompt=False,
|
||||
)
|
||||
logger.info(action, extra={'msg_type': 'ACTION'})
|
||||
obs = runtime.run_action(action)
|
||||
|
||||
if obs.exit_code == 0:
|
||||
test_result = {'program': obs.content}
|
||||
else:
|
||||
test_result = {'program': 'ERROR'}
|
||||
|
||||
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
||||
return test_result
|
||||
|
||||
|
||||
def process_instance(
|
||||
instance: pd.Series,
|
||||
metadata: EvalMetadata,
|
||||
reset_logger: bool = True,
|
||||
) -> EvalOutput:
|
||||
instance_id = instance.instance_id.replace('/', '__')
|
||||
config = get_config(metadata, instance_id)
|
||||
|
||||
# Set up the logger properly, so you can run multi-processing to parallelize the evaluation
|
||||
if reset_logger:
|
||||
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
||||
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
||||
else:
|
||||
logger.info(f'Starting evaluation for instance {instance_id}.')
|
||||
|
||||
instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
|
||||
Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.
|
||||
|
||||
Here's the user request you need to work on:
|
||||
{instance.task_inst}
|
||||
|
||||
You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:
|
||||
```
|
||||
{instance.dataset_folder_tree}
|
||||
```
|
||||
Here are some helpful previews for the dataset file(s):
|
||||
{instance.dataset_preview}
|
||||
|
||||
Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.
|
||||
Then, please run the program to check and fix any errors.
|
||||
Please do NOT run the program in the background.
|
||||
If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.
|
||||
|
||||
"""
|
||||
|
||||
runtime = create_runtime(config)
|
||||
call_async_from_sync(runtime.connect)
|
||||
initialize_runtime(runtime, instance)
|
||||
|
||||
# Here's how you can run the agent (similar to the `main` function) and get the final task state
|
||||
state: State | None = asyncio.run(
|
||||
run_controller(
|
||||
config=config,
|
||||
initial_user_action=MessageAction(content=instruction),
|
||||
runtime=runtime,
|
||||
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
||||
metadata.agent_class
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
# ======= Attempt to evaluate the agent's edits =======
|
||||
test_result = complete_runtime(runtime, instance)
|
||||
|
||||
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
|
||||
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
|
||||
if state is None:
|
||||
raise ValueError('State should not be None.')
|
||||
metrics = state.metrics.get() if state.metrics else None
|
||||
|
||||
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
|
||||
# for compatibility with the existing output format, we can remake the pairs here
|
||||
# remove when it becomes unnecessary
|
||||
histories = state.history.compatibility_for_eval_history_pairs()
|
||||
|
||||
# Save the output
|
||||
output = EvalOutput(
|
||||
instance_id=instance.instance_id,
|
||||
instruction=instruction,
|
||||
metadata=metadata,
|
||||
history=histories,
|
||||
metrics=metrics,
|
||||
error=state.last_error if state and state.last_error else None,
|
||||
test_result=test_result,
|
||||
)
|
||||
return output
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = get_parser()
|
||||
parser.add_argument(
|
||||
'--use_knowledge',
|
||||
type=str,
|
||||
default='false',
|
||||
choices=['true', 'false'],
|
||||
help='use expert-provided knowledge or not',
|
||||
)
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')
|
||||
|
||||
dataset_processed = []
|
||||
for example in tqdm(sab_dataset):
|
||||
dataset_processed.append(
|
||||
format_task_dict(example, args.use_knowledge == 'true')
|
||||
)
|
||||
|
||||
dataset = pd.DataFrame(dataset_processed)
|
||||
|
||||
llm_config = None
|
||||
if args.llm_config:
|
||||
llm_config = get_llm_config_arg(args.llm_config)
|
||||
if llm_config is None:
|
||||
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
||||
|
||||
metadata = make_metadata(
|
||||
llm_config,
|
||||
'ScienceAgentBench',
|
||||
args.agent_cls,
|
||||
args.max_iterations,
|
||||
args.eval_note,
|
||||
args.eval_output_dir,
|
||||
)
|
||||
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
||||
dataset['instance_id'] = dataset['instance_id'].apply(str)
|
||||
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
||||
|
||||
run_evaluation(
|
||||
instances, metadata, output_file, args.eval_num_workers, process_instance
|
||||
)
|
||||
49
evaluation/scienceagentbench/scripts/run_infer.sh
Executable file
49
evaluation/scienceagentbench/scripts/run_infer.sh
Executable file
@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
set -eo pipefail
|
||||
|
||||
source "evaluation/utils/version_control.sh"
|
||||
|
||||
MODEL_CONFIG=$1
|
||||
COMMIT_HASH=$2
|
||||
USE_KNOWLEDGE=$3
|
||||
AGENT=$4
|
||||
EVAL_LIMIT=$5
|
||||
NUM_WORKERS=$6
|
||||
|
||||
if [ -z "$NUM_WORKERS" ]; then
|
||||
NUM_WORKERS=1
|
||||
echo "Number of workers not specified, use default $NUM_WORKERS"
|
||||
fi
|
||||
checkout_eval_branch
|
||||
|
||||
if [ -z "$AGENT" ]; then
|
||||
echo "Agent not specified, use default CodeActAgent"
|
||||
AGENT="CodeActAgent"
|
||||
fi
|
||||
|
||||
if [ -z "$USE_KNOWLEDGE" ]; then
|
||||
echo "Use knowledge not specified, use default False"
|
||||
USE_KNOWLEDGE=false
|
||||
fi
|
||||
|
||||
get_agent_version
|
||||
|
||||
echo "AGENT: $AGENT"
|
||||
echo "AGENT_VERSION: $AGENT_VERSION"
|
||||
echo "MODEL_CONFIG: $MODEL_CONFIG"
|
||||
|
||||
COMMAND="poetry run python evaluation/scienceagentbench/run_infer.py \
|
||||
--agent-cls $AGENT \
|
||||
--llm-config $MODEL_CONFIG \
|
||||
--use_knowledge $USE_KNOWLEDGE \
|
||||
--max-iterations 30 \
|
||||
--eval-num-workers $NUM_WORKERS \
|
||||
--eval-note $AGENT_VERSION" \
|
||||
|
||||
if [ -n "$EVAL_LIMIT" ]; then
|
||||
echo "EVAL_LIMIT: $EVAL_LIMIT"
|
||||
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
|
||||
fi
|
||||
|
||||
# Run the command
|
||||
eval $COMMAND
|
||||
@ -4,9 +4,7 @@ import tarfile
|
||||
from glob import glob
|
||||
|
||||
from e2b import Sandbox as E2BSandbox
|
||||
from e2b.sandbox.exception import (
|
||||
TimeoutException,
|
||||
)
|
||||
from e2b.sandbox.exception import TimeoutException
|
||||
|
||||
from openhands.core.config import SandboxConfig
|
||||
from openhands.core.logger import openhands_logger as logger
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user