Add AgentBench. (#2012)

* Add AgentBench.

* Load the datasets from HF.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Add helper functions.

* Add mock executor.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Add retriv agent answer cmd.

* Adjust the dataset.
* Refine test results.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Consolidate all AgentBench datasets and scripts into a single CSV dataset.

* Refactor dataset source.
* Update helper functions.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Fix the CRLF problem.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Separate the instance's workspace.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Add cleanup logic and error handling for sandbox closure.

* Normalized dataset

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Update README.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Update the prompt to capture the answer.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Refactor script execution paths to use absolute container workspace path.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Update AgentBench README.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Delete useless functions.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Update evaluation/agent_bench/README.md

* Add script to summarize test results from JSONL file in AgentBench

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Delete useless script and codes.

Signed-off-by: ifuryst <ifuryst@gmail.com>

* Update evaluation/agent_bench/scripts/summarise_results.py

---------

Signed-off-by: ifuryst <ifuryst@gmail.com>
Co-authored-by: Boxuan Li <liboxuan@connect.hku.hk>
This commit is contained in:
Leo 2024-06-01 15:58:14 +08:00 committed by GitHub
parent 04d7354501
commit be251b11de
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 566 additions and 0 deletions

View File

@ -0,0 +1,59 @@
# AgentBench Evaluation
This folder contains evaluation harness for evaluating agents on
the [AgentBench: Evaluating LLMs as Agents](https://arxiv.org/abs/2308.03688).
## Configure OpenDevin and your LLM
Create a `config.toml` file if it does not exist at the root of the workspace. Please check [README.md](../../README.md)
for how to set this up.
Here is an example `config.toml` file:
```toml
[core]
max_iterations = 100
cache_dir = "/path/to/cache"
workspace_base = "/path/to/workspace"
workspace_mount_path = "/path/to/workspace"
sandbox_container_image = "ghcr.io/opendevin/sandbox:latest"
sandbox_type = "ssh"
sandbox_timeout = 120
ssh_hostname = "localhost"
use_host_network = false
run_as_devin = false
enable_auto_lint = true
[eval_gpt35_turbo]
model = "gpt-3.5-turbo"
api_key = "sk-123"
temperature = 0.0
[eval_gpt4o]
model = "gpt-4o"
api_key = "sk-123"
temperature = 0.0
```
## Start the evaluation
```bash
./evaluation/agent_bench/scripts/run_infer.sh [model_config] [agent] [eval_limit]
```
Following is the basic command to start the evaluation. Here we are only evaluating the `osbench` for now.
You can update the arguments in the script `evaluation/agent_bench/scripts/run_infer.sh`, such as `--max-iterations`, `--eval-num-workers` and so on.
- `--agent-cls`, the agent to use. For example, `CodeActAgent`.
- `--llm-config`: the LLM configuration to use. For example, `eval_gpt4_1106_preview`.
- `--max-iterations`: the number of iterations to run the evaluation. For example, `30`.
- `--eval-num-workers`: the number of workers to use for evaluation. For example, `5`.
- `--eval-n-limit`: the number of examples to evaluate. For example, `100`.
```bash
./evaluation/agent_bench/scripts/run_infer.sh eval_gpt35_turbo CodeActAgent 1
```

View File

View File

@ -0,0 +1,44 @@
import os
def analysis_size(size_str):
size_str = size_str.strip()
avails = {
'B': 1,
'Byte': 1,
'K': 1024,
'KB': 1024,
'M': 1024 * 1024,
'MB': 1024 * 1024,
'G': 1024 * 1024 * 1024,
'GB': 1024 * 1024 * 1024,
'T': 1024 * 1024 * 1024 * 1024,
'TB': 1024 * 1024 * 1024 * 1024,
'P': 1024 * 1024 * 1024 * 1024 * 1024,
'PB': 1024 * 1024 * 1024 * 1024 * 1024,
}
for size_unit in avails:
if size_str.endswith(size_unit):
return int(size_str[: -len(size_unit)]) * avails[size_unit]
return int(size_str)
def compare_results(check_method: str, model_answer: str, final_ans: str) -> bool:
try:
match check_method:
case 'check/integer-match.py':
return int(model_answer) == int(final_ans)
case 'check/size-match.py':
return analysis_size(model_answer) == analysis_size(final_ans)
return (
model_answer.replace('\r\n', '\n').replace('\r', '\n').strip()
== final_ans.replace('\r\n', '\n').replace('\r', '\n').strip()
)
except Exception:
return False
def create_sh_file(filename: str, cmds: str) -> None:
with open(filename, 'w', encoding='utf-8') as file:
file.write(cmds.replace('\r\n', '\n'))
os.chmod(filename, 0o755)

View File

@ -0,0 +1,393 @@
import asyncio
import json
import logging
import multiprocessing as mp
import os
import pathlib
import re
import shutil
import subprocess
import time
from concurrent.futures import ProcessPoolExecutor
import docker
from datasets import load_dataset
from tqdm import tqdm
from evaluation.agent_bench.helper import compare_results, create_sh_file
from opendevin.controller.state.state import State
from opendevin.core.config import args, config, get_llm_config_arg
from opendevin.core.logger import get_console_handler
from opendevin.core.logger import opendevin_logger as logger
from opendevin.core.main import main
from opendevin.events.action import MessageAction, CmdRunAction
from opendevin.events.serialization.event import event_to_dict
from opendevin.runtime.docker.ssh_box import DockerSSHBox
def cleanup():
print('Cleaning up child processes...')
for process in mp.active_children():
print(f'Terminating child process: {process.name}')
process.terminate()
process.join()
def codeact_user_response(state: State) -> str:
msg = (
'Please continue working on the task on whatever approach you think is suitable.\n'
'If you think you have solved the task, please first send your answer to user through '
'message and then <execute_bash> exit </execute_bash>.\n'
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
'For example: The answer to the question is <solution> 42 </solution>.\n'
'IMPORTANT: YOU SHOULD NEVER ASK FOR HUMAN HELP.\n'
)
if state.history:
user_msgs = [
action
for action, _ in state.history
if isinstance(action, MessageAction) and action.source == 'user'
]
if len(user_msgs) >= 2:
# let the agent know that it can give up when it has tried 3 times
return (
msg
+ 'If you want to give up, run: <execute_bash> exit </execute_bash>.\n'
)
return msg
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, '
'please first send your answer to user through message and then exit.\n'
}
def process_instance(
instance,
agent_class,
metadata,
eval_output_dir,
reset_logger: bool = True,
):
# =============================================
# preparation
# =============================================
inst_id = instance.instance_id
question = instance.description
# create a directory for the instance's workspace
instance_workspace = str(os.path.join(config.workspace_base, inst_id))
container_inst_workspace = str(os.path.join(config.workspace_mount_path_in_sandbox, inst_id))
if os.path.exists(instance_workspace):
shutil.rmtree(instance_workspace)
os.makedirs(instance_workspace, exist_ok=True)
# Set up the logger properly, so you can run multiprocessing to parallel the evaluation
if reset_logger:
# Set up logger
log_file = os.path.join(eval_output_dir, 'logs', f'instance_{inst_id}.log')
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
# add back the console handler to print ONE line
logger.addHandler(get_console_handler())
logger.info(
f'Starting evaluation for instance {inst_id}.\nHint: run "tail -f {log_file}" to see live logs in a seperate shell'
)
# Remove all existing handlers from logger
for handler in logger.handlers[:]:
logger.removeHandler(handler)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(
logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
)
logger.addHandler(file_handler)
# =============================================
# build instruction
# =============================================
# Prepare instruction
instruction = (
f'Please fix the following issue.\n'
'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
'Please encapsulate your final answer (answer ONLY) within <solution> and </solution>.\n'
'For example: The answer to the question is <solution> 42 </solution>.\n'
'# Problem \n'
f'{question}\n\n'
)
instruction += (
'IMPORTANT: You should ONLY interact with the environment provided '
'to you AND NEVER ASK FOR HUMAN HELP.\n'
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX.get(agent_class, '')
# =============================================
# create sandbox and run the agent
# =============================================
sandbox = DockerSSHBox()
sandbox.execute(f'cd {inst_id}')
init_cmd = instance.init
if init_cmd is not None:
scpt_name = f'{instance.instance_id}_init.sh'
scpt_path = os.path.join(container_inst_workspace, scpt_name)
host_scpt_path = os.path.join(instance_workspace, scpt_name)
create_sh_file(host_scpt_path, init_cmd)
logger.info(f'Running init script: {scpt_path}')
_, init_res = sandbox.execute(scpt_path)
logger.info(f'Init script result: {init_res}')
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State = asyncio.run(
main(
instruction,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
agent_class
),
sandbox=sandbox,
)
)
if state is None:
raise ValueError('State should not be None.')
# get the ground truth
# OSBenchSSHBox.get_ground_truth(instance, state)
# =============================================
# result evaluation
# =============================================
agent_answer = ''
get_agent_result_cmd = instance.get_agent_result
if get_agent_result_cmd is not None:
scpt_name = f'{instance.instance_id}_get_agent_result.sh'
scpt_path = os.path.join(container_inst_workspace, scpt_name)
host_scpt_path = os.path.join(instance_workspace, scpt_name)
create_sh_file(host_scpt_path, get_agent_result_cmd)
logger.info(f'Running get agent result cmd: {scpt_path}')
_, agent_answer = sandbox.execute(scpt_path)
else:
logger.info('Retrieving agent answer from history.')
raw_ans = ''
for act, _ in reversed(state.history):
if isinstance(act, MessageAction) and act.source == 'agent':
raw_ans = act.content
break
if isinstance(act, CmdRunAction) and act.source == 'agent':
raw_ans = act.thought
break
agent_answer = re.findall(r'<solution>(.*?)</solution>', raw_ans)
if len(agent_answer) == 0:
logger.warning(f'Failed to parse model answer: {raw_ans}')
agent_answer = raw_ans
else:
agent_answer = agent_answer[0]
final_ans = ''
if instance.ground_truth is not None:
final_ans = instance.ground_truth
else:
get_ground_truth_cmd = instance.get_ground_truth
if get_ground_truth_cmd is not None:
scpt_name = f'{instance.instance_id}_get_ground_truth.sh'
scpt_path = os.path.join(container_inst_workspace, scpt_name)
host_scpt_path = os.path.join(instance_workspace, scpt_name)
create_sh_file(host_scpt_path, get_ground_truth_cmd)
logger.info(f'Running get ground truth cmd: {scpt_path}')
sandbox.execute(f'cd {container_inst_workspace}')
_, final_ans = sandbox.execute(scpt_path)
comparison_method = instance.comparison_method
logger.info(
f'Final message: {agent_answer} | Ground truth: {final_ans} | Comparison method: {comparison_method}'
)
test_result = compare_results(comparison_method, agent_answer, final_ans)
histories = [
(event_to_dict(action), event_to_dict(obs)) for action, obs in state.history
]
# Save the output
output = {
'instance_id': inst_id,
'instance': instance.to_dict(),
'instruction': instruction,
'metadata': metadata,
'history': histories,
'error': state.error if state and state.error else None,
'test_result': {
'agent_answer': agent_answer,
'final_answer': final_ans,
'check_method': comparison_method,
'result': test_result,
},
}
# clean up
if os.path.exists(instance_workspace):
shutil.rmtree(instance_workspace)
# Close the sandbox
try:
sandbox.close()
except docker.errors.NotFound as e:
logger.error(f'Failed to close sandbox: {e}')
return output
if __name__ == '__main__':
# =============================================
# load datasets
# =============================================
dataset = load_dataset('iFurySt/AgentBench')
agent_bench_tests = dataset['osbench'].to_pandas()
logger.info(f'Loaded {len(agent_bench_tests)} tests.')
# =============================================
# handle arguments and prepare for evaluation
# =============================================
if args.llm_config:
specified_llm_config = get_llm_config_arg(args.llm_config)
if specified_llm_config:
config.llm = specified_llm_config
logger.info(f'Config for evaluation: {config}')
# TEST METADATA
agent_cls = args.agent_cls
assert (
agent_cls in AGENT_CLS_TO_FAKE_USER_RESPONSE_FN
), f'Unsupported agent class: {agent_cls}'
model_name = config.llm.model.split('/')[-1]
max_iterations = args.max_iterations
eval_note = ''
if args.eval_note is not None:
eval_note += '_N_' + args.eval_note
eval_op_dir = str(
os.path.join(
args.eval_output_dir,
'agent_bench',
agent_cls,
model_name + '_maxiter_' + str(max_iterations) + eval_note,
)
)
pathlib.Path(eval_op_dir).mkdir(parents=True, exist_ok=True)
pathlib.Path(str(os.path.join(eval_op_dir, 'logs'))).mkdir(
parents=True, exist_ok=True
)
logger.info(f'Using evaluation output directory: {eval_op_dir}')
meta = {
'agent_class': agent_cls,
'model_name': model_name,
'max_iterations': max_iterations,
'eval_output_dir': eval_op_dir,
'start_time': time.strftime('%Y-%m-%d %H:%M:%S'),
# get the commit id of current repo for reproducibility
'git_commit': subprocess.check_output(['git', 'rev-parse', 'HEAD'])
.decode('utf-8')
.strip(),
}
logger.info(f'Metadata: {meta}')
with open(os.path.join(eval_op_dir, 'metadata.json'), 'w') as f:
json.dump(meta, f)
# LIMIT EVALUATION
eval_n_limit = args.eval_n_limit
if eval_n_limit:
agent_bench_tests = agent_bench_tests[:eval_n_limit]
logger.info(f'Limiting evaluation to first {eval_n_limit} instances.')
# OUTPUT FILE
output_file = os.path.join(eval_op_dir, 'output.jsonl')
logger.info(f'Writing evaluation output to {output_file}')
finished_instance_ids = set()
if os.path.exists(output_file):
with open(output_file, 'r') as f:
for line in f:
data = json.loads(line)
finished_instance_ids.add(data['instance_id'])
logger.warning(
f'Output file {output_file} already exists. Loaded {len(finished_instance_ids)} finished instances.'
)
output_fp = open(output_file, 'a')
logger.info(
f'Evaluation started with Agent {agent_cls}, model {model_name}, max iterations {max_iterations}.'
)
# =============================================
# filter out finished instances
# =============================================
new_agent_bench_tests = []
for idx, inst in agent_bench_tests.iterrows():
if inst.instance_id in finished_instance_ids:
logger.info(
f'Skipping instance {inst.instance_id} as it is already finished.'
)
continue
new_agent_bench_tests.append(inst)
agent_bench_tests = new_agent_bench_tests
logger.info(
f'Finished instances: {len(finished_instance_ids)}, Remaining instances: {len(agent_bench_tests)}'
)
# =============================================
# start task
# =============================================
pbar = tqdm(total=len(agent_bench_tests))
# This function tracks the progress AND write the output to a JSONL file
def update_progress(fut):
pbar.update(1)
output = fut.result()
pbar.set_description(f'Instance {output["instance_id"]}')
pbar.set_postfix_str(f'Test Result: {output["test_result"]["result"]}')
logger.info(
f'Finished evaluation for instance {output["instance_id"]}: {output["test_result"]["result"]}'
)
output_fp.write(json.dumps(output) + '\n')
output_fp.flush()
# This sets the multiprocessing
num_workers = args.eval_num_workers
logger.info(f'Using {num_workers} workers for evaluation.')
try:
with ProcessPoolExecutor(num_workers) as executor:
futures = []
# This is how we perform multiprocessing
for inst in agent_bench_tests:
future = executor.submit(
process_instance,
inst,
agent_cls,
meta,
eval_op_dir,
reset_logger=bool(num_workers > 1),
)
future.add_done_callback(update_progress)
futures.append(future)
# Wait for all futures to complete
for future in futures:
future.result()
except KeyboardInterrupt:
print('KeyboardInterrupt received. Cleaning up...')
cleanup()
output_fp.close()
logger.info('Evaluation finished.')

View File

@ -0,0 +1,33 @@
#!/bin/bash
MODEL_CONFIG=$1
AGENT=$2
EVAL_LIMIT=$3
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
# IMPORTANT: Because Agent's prompt changes fairly often in the rapidly evolving codebase of OpenDevin
# We need to track the version of Agent in the evaluation to make sure results are comparable
AGENT_VERSION=v$(poetry run python -c "import agenthub; from opendevin.controller.agent import Agent; print(Agent.get_cls('$AGENT').VERSION)")
echo "AGENT: $AGENT"
echo "AGENT_VERSION: $AGENT_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
COMMAND="export PYTHONPATH=evaluation/agent_bench:\$PYTHONPATH && poetry run python evaluation/agent_bench/run_infer.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations 30 \
--max-chars 10000000 \
--eval-num-workers 5 \
--eval-note $AGENT_VERSION"
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
# Run the command
eval $COMMAND

View File

@ -0,0 +1,37 @@
import json
import sys
def extract_test_results(res_file_path: str) -> tuple[list[str], list[str]]:
passed = []
failed = []
with open(res_file_path, 'r') as file:
for line in file:
data = json.loads(line.strip())
instance_id = data['instance_id']
resolved = False
if 'test_result' in data and 'result' in data['test_result']:
resolved = data['test_result']['result']
if resolved:
passed.append(instance_id)
else:
failed.append(instance_id)
return passed, failed
if __name__ == '__main__':
if len(sys.argv) != 2:
print(
'Usage: poetry run python summarise_results.py <path_to_output_jsonl_file>'
)
sys.exit(1)
json_file_path = sys.argv[1]
passed_tests, failed_tests = extract_test_results(json_file_path)
succ_rate = len(passed_tests) / (len(passed_tests) + len(failed_tests))
print(
f'\nPassed {len(passed_tests)} tests, failed {len(failed_tests)} tests, resolve rate = {succ_rate}'
)
print('PASSED TESTS:')
print(passed_tests)
print('FAILED TESTS:')
print(failed_tests)