feat(evaluation): Add NoCode-bench evaluation script (#10229)

This commit is contained in:
Zhonghao Jiang 2025-08-17 00:41:22 +08:00 committed by GitHub
parent 19105a2a13
commit 7229a16b45
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 2199 additions and 0 deletions

View File

@ -0,0 +1,45 @@
# Evaluate OpenHands on NoCode-bench
## LLM Setup
Please follow [here](../../README.md#setup).
## Docker image download
Evaluating OpenHands on NoCode-bench need instance-level docker image.
Please follow the instructions of NoCode-bench image setup to build or download all instance-level dokcer [here](https://github.com/NoCode-bench/NoCode-bench).
## Generate patch
Please follow the instructions [here](../swe_bench/README.md#running-locally-with-docker)
For example,
```bash
bash ./evaluation/benchmarks/nocode_bench/scripts/run_infer_nc.sh llm.claude HEAD CodeActAgent 114 100 10 NoCode-bench/NoCode-bench_Verified test
```
The results will be generated in evaluation/evaluation_outputs/outputs/XXX/CodeActAgent/YYY/output.jsonl.
## Runing evaluation
First, install [NoCode-bench](https://github.com/NoCode-bench/NoCode-bench).
Second, convert the output.jsonl to patch.jsonl with [script](scripts/eval/convert.py).
```bash
python evaluation/benchmarks/multi_swe_bench/scripts/eval/convert.py
```
Finally, evaluate with NoCode-bench.
```bash
export PYTHONPATH=$PYTHONPATH:$(pwd)
python ./evaluation/eval.py \
--predictions_path ./all_preds.jsonl \ # <path_to_your_predictions>
--log_dir ./evaluation/logs \ # <path_to_your_log_dir>
--bench_tasks NoCode-bench/NoCode-bench_Verified \ # <dataset_name>
--max_workers 110 \ # <number_of_workers>
--output_file eval_result.txt \ # <path_to_your_output_file>
--image_level repo \ # <cache_image_level>
--timeout 600 \ # <timeout_in_seconds>
--proxy None # <proxy_if_needed>
```

View File

@ -0,0 +1,52 @@
"""
Utilities for handling binary files and patch generation in SWE-bench evaluation.
"""
def remove_binary_diffs(patch_text):
"""
Remove binary file diffs from a git patch.
Args:
patch_text (str): The git patch text
Returns:
str: The cleaned patch text with binary diffs removed
"""
lines = patch_text.splitlines()
cleaned_lines = []
block = []
is_binary_block = False
for line in lines:
if line.startswith('diff --git '):
if block and not is_binary_block:
cleaned_lines.extend(block)
block = [line]
is_binary_block = False
elif 'Binary files' in line:
is_binary_block = True
block.append(line)
else:
block.append(line)
if block and not is_binary_block:
cleaned_lines.extend(block)
return '\n'.join(cleaned_lines)
def remove_binary_files_from_git():
"""
Generate a bash command to remove binary files from git staging.
Returns:
str: A bash command that removes binary files from git staging
"""
return """
for file in $(git status --porcelain | grep -E "^(M| M|\\?\\?|A| A)" | cut -c4-); do
if [ -f "$file" ] && (file "$file" | grep -q "executable" || git check-attr binary "$file" | grep -q "binary: set"); then
git rm -f "$file" 2>/dev/null || rm -f "$file"
echo "Removed: $file"
fi
done
""".strip()

View File

@ -0,0 +1,545 @@
DOCPATH_PATTERNS = [
r'docs/',
r'^CHANGES\.rst$',
r'doc/',
r'ChangeLog',
r'^changelog/',
r'^CHANGES$',
]
MATPLOTLIB_CONFIG = {
k: {
'python': '3.11',
'conda_env': 'matplotlib_35',
'install': 'python -m pip install -e .',
'test_cmd': 'pytest -rA --color=no',
}
for k in ['3.5', '3.6', '3.7', '3.8', '3.9']
}
MATPLOTLIB_CONFIG.update(
{
k: {
'python': '3.8',
'conda_env': 'matplotlib_31',
'install': 'python -m pip install -e .',
'test_cmd': 'pytest -rA --color=no',
}
for k in ['3.1', '3.2', '3.3', '3.4']
}
)
MATPLOTLIB_CONFIG.update(
{
k: {
'python': '3.5',
'install': 'python setup.py build; python setup.py install',
'conda_env': 'matplotlib_11',
'nonroot': True,
'test_cmd': 'pytest -rA --color=no',
}
for k in ['2.0', '2.1', '2.2', '1.0', '1.1', '1.2', '1.3', '1.4', '1.5']
}
)
for k in ['3.8', '3.9']:
MATPLOTLIB_CONFIG[k]['install'] = (
'python -m pip install --no-build-isolation -e ".[dev]"'
)
SYMPY_CONFIG = {}
SYMPY_CONFIG.update(
{
'1.0': {
'conda_env': 'sympy_10',
'install': 'pip install -e .',
'test_cmd': 'bin/test -C -v',
# testfile -k testname
}
}
)
REQUESTS_CONFIG = {}
REQUESTS_CONFIG.update(
{
k: {
'conda_env': 'requests_227',
'install': 'pip install -r requirements-dev.txt',
'test_cmd': 'pytest -rA',
}
for k in ['2.27']
}
)
REQUESTS_CONFIG.update(
{
k: {
'conda_env': 'requests_226',
'install': 'pip install -e .',
'test_cmd': 'pytest -rA',
}
for k in ['2.26']
}
)
PYTEST_CONFIG = {}
PYTEST_CONFIG.update(
{
k: {
'conda_env': 'pytest_33',
'install': 'pip install -e .',
'test_cmd': 'pytest -v --color=no',
}
for k in ['4.4', '4.1', '3.7', '3.4', '3.3']
}
)
PYLINT_CONFIG = {}
PYLINT_CONFIG.update(
{
k: {
'conda_env': 'pylint_210',
'install': 'pip install -r requirements_test.txt',
'test_cmd': 'pytest -rA --color=no',
}
for k in [
'2.10',
'2.11',
'2.13',
'2.14',
'2.15',
'2.16',
'2.17',
'3.0',
'3.1',
'3.2',
'3.3',
]
}
)
PYLINT_CONFIG.update(
{
k: {
'conda_env': 'pylint_210',
'pre_install': [
r"sed -i 's/setuptools==[0-9.]\+/setuptools==58.0.0/' requirements_test_min.txt"
],
'install': 'pip install -r requirements_test.txt',
'test_cmd': 'pytest -rA --color=no',
}
for k in ['3.0', '3.1', '3.2', '3.3']
}
)
ASTROPY_CONFIG = {}
ASTROPY_CONFIG.update(
{
k: {
'conda_env': 'astropy_11',
'install': 'python -m pip install -e .[test] --verbose',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['1.1', '1.2', '1.3', '2.0']
}
)
ASTROPY_CONFIG.update(
{
k: {
'conda_env': 'astropy_30',
'pre_install': """echo '[pytest]
filterwarnings =
ignore::DeprecationWarning' > pytest.ini""",
'install': 'python -m pip install -e .[test] --verbose',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['3.0', '3.1', '3.2']
}
)
ASTROPY_CONFIG.update(
{
k: {
'conda_env': 'astropy_40',
'pre_install': [
r"""sed -i 's/requires = \["setuptools",/requires = \["setuptools==68.0.0",/' pyproject.toml"""
],
'install': 'python -m pip install -e .[test] --verbose',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['4.0']
}
)
ASTROPY_CONFIG.update(
{
k: {
'conda_env': 'astropy_41',
'pre_install': [
r"""sed -i 's/requires = \["setuptools",/requires = \["setuptools==68.0.0",/' pyproject.toml""",
"""sed -i 's/^qt_no_exception_capture = 1$/; qt_no_exception_capture = 1/' setup.cfg""",
r"""sed -i '/setuptools==68.0.0",/a \ "markupsafe==2.0.1",' pyproject.tomlsed -i '/setuptools==68.0.0",/a \ "markupsafe==2.0.1",' pyproject.toml""",
],
'install': 'python -m pip install -e .[test] --verbose',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['4.1']
}
)
ASTROPY_CONFIG.update(
{
k: {
'conda_env': 'astropy_42',
'pre_install': [
r"""sed -i 's/requires = \["setuptools",/requires = \["setuptools==68.0.0",/' pyproject.toml""",
r"""sed -i '/setuptools==68.0.0",/a \ "markupsafe==2.0.1",' pyproject.tomlsed -i '/setuptools==68.0.0",/a \ "markupsafe==2.0.1",' pyproject.toml""",
],
'install': 'python -m pip install -e .[test] --verbose',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['4.2', '4.3', '5.0', '5.1']
}
)
ASTROPY_CONFIG.update(
{
k: {
'conda_env': 'astropy_52',
'pre_install': [
r"""sed -i 's/requires = \["setuptools",/requires = \["setuptools==68.0.0",/' pyproject.toml"""
],
'install': 'python -m pip install -e .[test] --verbose',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['5.2', '5.3', '6.0', '6.1', '7.0']
}
)
DJANGO_CONFIG = {}
DJANGO_CONFIG.update(
{
k: {
'install': 'pip install -e .',
'conda_env': 'django_22',
'test_cmd': 'python tests/runtests.py --verbosity 2',
}
for k in ['1.9', '2.2']
}
)
DJANGO_CONFIG.update(
{
'3.2': {
'install': 'pip install -e .',
'conda_env': 'django_32',
'test_cmd': 'python tests/runtests.py --verbosity 2',
},
'4.2': {
'install': 'pip install -e .',
'conda_env': 'django_42',
'test_cmd': 'python tests/runtests.py --verbosity 2',
},
'5.1': {
'install': 'pip install -e .',
'conda_env': 'django_51',
'test_cmd': 'python tests/runtests.py --verbosity 2',
},
}
)
SPHINX_CONFIG = {}
SPHINX_CONFIG.update(
{ # 1.x 版本问题,实际无用
k: {
'conda_env': 'sphinx_20',
'install': 'python -m pip install -e .[test]',
'pre_install': ["sed -i 's/pytest/pytest -rA/' tox.ini"],
'test_cmd': 'tox --current-env -epy37 -v --',
}
for k in ['1.3', '1.4', '1.5', '1.6', '1.7', '1.8']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_20',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
"sed -i 's/Jinja2>=2.3/Jinja2<3.0/' setup.py",
],
'test_cmd': 'tox --current-env -epy37 -v --',
}
for k in ['2.0', '2.1', '2.2', '2.3', '2.4']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_30',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
"sed -i 's/Jinja2>=2.3/Jinja2<3.0/' setup.py",
"sed -i 's/sphinxcontrib-applehelp/sphinxcontrib-applehelp<=1.0.7/' setup.py",
"sed -i 's/sphinxcontrib-devhelp/sphinxcontrib-devhelp<=1.0.5/' setup.py",
"sed -i 's/sphinxcontrib-qthelp/sphinxcontrib-qthelp<=1.0.6/' setup.py",
"sed -i 's/alabaster>=0.7,<0.8/alabaster>=0.7,<0.7.12/' setup.py",
"sed -i \"s/'packaging',/'packaging', 'markupsafe<=2.0.1',/\" setup.py",
"sed -i 's/sphinxcontrib-htmlhelp/sphinxcontrib-htmlhelp<=2.0.4/' setup.py",
"sed -i 's/sphinxcontrib-serializinghtml/sphinxcontrib-serializinghtml<=1.1.9/' setup.py",
],
'test_cmd': 'tox --current-env -epy37 -v --',
}
for k in ['3.0', '3.1', '3.2', '3.3', '3.4', '3.5', '4.0']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_30',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
"sed -i 's/Jinja2>=2.3/Jinja2<3.0/' setup.py",
"sed -i 's/sphinxcontrib-applehelp/sphinxcontrib-applehelp<=1.0.7/' setup.py",
"sed -i 's/sphinxcontrib-devhelp/sphinxcontrib-devhelp<=1.0.5/' setup.py",
"sed -i 's/sphinxcontrib-qthelp/sphinxcontrib-qthelp<=1.0.6/' setup.py",
"sed -i 's/alabaster>=0.7,<0.8/alabaster>=0.7,<0.7.12/' setup.py",
"sed -i \"s/'packaging',/'packaging', 'markupsafe<=2.0.1',/\" setup.py",
(
"grep -q 'sphinxcontrib-htmlhelp>=2.0.0' setup.py && "
"sed -i 's/sphinxcontrib-htmlhelp>=2.0.0/sphinxcontrib-htmlhelp>=2.0.0,<=2.0.4/' setup.py || "
"sed -i 's/sphinxcontrib-htmlhelp/sphinxcontrib-htmlhelp<=2.0.4/' setup.py"
),
(
"grep -q 'sphinxcontrib-serializinghtml>=1.1.5' setup.py && "
"sed -i 's/sphinxcontrib-serializinghtml>=1.1.5/sphinxcontrib-serializinghtml>=1.1.5,<=1.1.9/' setup.py || "
"sed -i 's/sphinxcontrib-serializinghtml/sphinxcontrib-serializinghtml<=1.1.9/' setup.py"
),
],
'test_cmd': 'tox --current-env -epy37 -v --',
}
for k in ['4.1']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_30',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
"sed -i 's/Jinja2>=2.3/Jinja2<3.0/' setup.py",
"sed -i 's/sphinxcontrib-applehelp/sphinxcontrib-applehelp<=1.0.7/' setup.py",
"sed -i 's/sphinxcontrib-devhelp/sphinxcontrib-devhelp<=1.0.5/' setup.py",
"sed -i 's/sphinxcontrib-qthelp/sphinxcontrib-qthelp<=1.0.6/' setup.py",
"sed -i 's/alabaster>=0.7,<0.8/alabaster>=0.7,<0.7.12/' setup.py",
"sed -i \"s/'packaging',/'packaging', 'markupsafe<=2.0.1',/\" setup.py",
"sed -i 's/sphinxcontrib-htmlhelp>=2.0.0/sphinxcontrib-htmlhelp>=2.0.0,<=2.0.4/' setup.py",
"sed -i 's/sphinxcontrib-serializinghtml>=1.1.5/sphinxcontrib-serializinghtml>=1.1.5,<=1.1.9/' setup.py",
],
'test_cmd': 'tox --current-env -epy37 -v --',
}
for k in ['4.2', '4.3', '4.4']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_30',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
],
'test_cmd': 'tox --current-env -epy37 -v --',
}
for k in ['4.5', '5.0', '5.1', '5.2']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_60',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
],
'test_cmd': 'tox --current-env -epy39 -v --',
}
for k in ['6.0', '6.2', '7.0', '7.1']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_72',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
'apt-get update && apt-get install -y graphviz',
],
'test_cmd': 'tox --current-env -epy39 -v --',
}
for k in ['7.2', '7.3', '7.4']
}
)
SPHINX_CONFIG.update(
{
k: {
'conda_env': 'sphinx_80',
'install': 'python -m pip install -e .[test]',
'pre_install': [
"sed -i 's/pytest/pytest -rA/' tox.ini",
],
'test_cmd': 'tox --current-env -epy310 -v --',
}
for k in ['8.0', '8.1']
}
)
SKLEARN_CONFIG = {}
SKLEARN_CONFIG.update(
{
k: {
'conda_env': 'skl_020',
'install': 'pip install -v --no-use-pep517 --no-build-isolation -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0.20', '0.21', '0.22']
}
)
SKLEARN_CONFIG.update(
{
k: {
'conda_env': 'skl_100',
'install': 'pip install -v --no-use-pep517 --no-build-isolation -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0.23', '0.24', '1.00', '1.01', '1.02']
}
)
SKLEARN_CONFIG.update(
{
k: {
'conda_env': 'skl_104',
'install': 'pip install -v --no-use-pep517 --no-build-isolation -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['1.03', '1.04', '1.05']
}
)
SEABORN_CONFIG = {}
SEABORN_CONFIG.update(
{
k: {
'conda_env': 'seaborn_010',
'install': 'pip install -e .[dev]',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0.3', '0.4', '0.5', '0.6', '0.11', '0.12', '0.13', '0.14']
}
)
XARRAY_CONFIG = {}
XARRAY_CONFIG.update(
{
k: {
'conda_env': 'xarray_0014',
'install': 'pip install -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0014', '0015', '0016']
}
)
XARRAY_CONFIG.update(
{
k: {
'conda_env': 'xarray_0017',
'install': 'pip install -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0017', '0018', '0019', '0020', '0021']
}
)
XARRAY_CONFIG.update(
{
k: {
'conda_env': 'xarray_2203',
'install': 'pip install -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['2203', '2206', '2209', '2210', '2211', '2212']
}
)
XARRAY_CONFIG.update(
{
k: {
'conda_env': 'xarray_2303',
'install': 'pip install -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in [
'2303',
'2304',
'2305',
'2306',
'2308',
'2309',
'2310',
'2311',
'2312',
]
}
)
XARRAY_CONFIG.update(
{
k: {
'conda_env': 'xarray_2401',
'install': 'pip install -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['2401', '2402', '2403', '2405', '2407', '2409', '2410', '2411']
}
)
SKLEARN_CONFIG = {}
SKLEARN_CONFIG.update(
{
k: {
'conda_env': 'skl_020',
'install': 'pip install -v --no-use-pep517 --no-build-isolation -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0.20', '0.21', '0.22']
}
)
SKLEARN_CONFIG.update(
{
k: {
'conda_env': 'skl_100',
'install': 'pip install -v --no-use-pep517 --no-build-isolation -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['0.23', '0.24', '1.00', '1.01', '1.02']
}
)
SKLEARN_CONFIG.update(
{
k: {
'conda_env': 'skl_104',
'install': 'pip install -v --no-use-pep517 --no-build-isolation -e .',
'test_cmd': 'pytest --color=no -rA',
}
for k in ['1.03', '1.04', '1.05', '1.06', '1.07']
}
)
MAP_REPO_TO_CONFIG = {
'pydata/xarray': XARRAY_CONFIG,
'mwaskom/seaborn': SEABORN_CONFIG,
'scikit-learn/scikit-learn': SKLEARN_CONFIG,
'sphinx-doc/sphinx': SPHINX_CONFIG,
'django/django': DJANGO_CONFIG,
'astropy/astropy': ASTROPY_CONFIG,
'pylint-dev/pylint': PYLINT_CONFIG,
'pytest-dev/pytest': PYTEST_CONFIG,
'psf/requests': REQUESTS_CONFIG,
'sympy/sympy': SYMPY_CONFIG,
'matplotlib/matplotlib': MATPLOTLIB_CONFIG,
}

View File

@ -0,0 +1,65 @@
<uploaded_files>
/workspace/{{ workspace_dir_name }}
</uploaded_files>
I've uploaded a python code repository in the directory {{ workspace_dir_name }}. Consider the following issue description:
<doc_change>
{{ instance.problem_statement }}
</doc_change>
Can you help me add the new features to the repository based on the changes in the <doc_change>?
I've already taken care of all changes to any of the test files described in the <doc_change>. This means you DON'T have to modify the testing logic or any of the tests in any way!
Also the development Python environment is already set up for you (i.e., all dependencies already installed), so you don't need to install other packages.
Your task is to make the minimal changes to non-test files in the /workspace/{{ workspace_dir_name }} directory to implement the new features required by the documentation updates.
Follow these phases to resolve the issue:
Phase 1. READING: read the requirements and reword it in clearer terms
1.1 If there are code or config snippets. Express in words any best practices or conventions in them.
1.2 Hightlight method names, variables, file names, stack traces, and technical details, particularly those related to new features.
1.3 Explain the new feature requirements in clear terms.
1.4 Specify functional scope and expected behavior of new features.
1.5 Hightlight any best practices to take into account when developing and testing the new feature.
Phase 2. RUNNING: install and run the functionality in the repository to validate the new features
2.1 Follow the readme.
2.2 Install the environment and anything needed.
2.2 Iterate and figure out how to validate the newly added features.
Phase 3. EXPLORATION: find the files related to the new features and possible implementation solutions
3.1 Use `grep` to search for relevant methods, classes, keywords and feature requirements.
3.2 Identify all files related to the new features.
3.3 Propose the methods and files to implement the new features and explain why.
3.4 From the possible file locations, select the most likely location to implement the new features.
Phase 4. TEST CREATION: before implementing any new features, create a script to validate the feature's correctness.
4.1 Look at existing test files in the repository to understand the test format/structure.
4.2 Create a minimal validation script to verify the newly added features.
4.3 Run the validation script to confirm the new features are successfully added and working as expected.
4.4 Adjust the validation script as necessary to ensure the new features fully meet the requirements.
Phase 5. FEATURE ANALYSIS: state clearly the new feature and how to implement it
5.1 State clearly what the new feature is.
5.2 State clearly where the feature should be implemented.
5.3 State clearly how the test validates the new feature.
5.4 State clearly the best practices to take into account when implementing the new feature.
5.5 State clearly how to implement the new feature.
Phase 6. FEATURE IMPLEMENTATION: edit the source code to implement your chosen solution for the new feature
6.1 Make minimal, focused changes to implement the new feature.
Phase 7. VERIFICATION: Test your new feature thoroughly.
7.1 Run your validation script to verify the new feature works as expected.
7.2 Add edge cases to your test script to ensure comprehensive coverage of the new feature.
7.3 Run existing tests related to the modified code to ensure you haven't broken anything.
Phase 8. FINAL REVIEW: Carefully re-read the feature requirements and compare your changes with the base commit {{ instance.base_commit }}
8.1 Ensure you've fully implemented all required features.
8.2 Run any tests in the repository related to:
8.2.1 The new features you are adding
8.2.2 The files you modified
8.2.3 The functions you changed
8.3 If any tests fail, revise your implementation until all tests pass and the new feature works as expected.
Be thorough in your exploration, testing, and reasoning. It's fine if your thinking process is lengthy - quality and completeness are more important than brevity.

View File

@ -0,0 +1,39 @@
"""Mapping instance_id to resource_factor.
Different instances may have different resource requirements.
e.g., some instances may require more memory/CPU to run inference.
This file tracks the resource requirements of different instances.
"""
import json
import os
from openhands.core.logger import openhands_logger as logger
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
DEFAULT_RUNTIME_RESOURCE_FACTOR = int(
os.environ.get('DEFAULT_RUNTIME_RESOURCE_FACTOR', 1)
)
# dataset to resource mapping
_global_resource_mapping: dict[str, dict[str, float]] = {}
def get_resource_mapping(dataset_name: str) -> dict[str, float]:
if dataset_name not in _global_resource_mapping:
file_path = os.path.join(CUR_DIR, f'{dataset_name}.json')
if not os.path.exists(file_path):
logger.info(f'Resource mapping for {dataset_name} not found.')
return None
with open(file_path, 'r') as f:
_global_resource_mapping[dataset_name] = json.load(f)
logger.debug(f'Loaded resource mapping for {dataset_name}')
return _global_resource_mapping[dataset_name]
def get_instance_resource_factor(dataset_name: str, instance_id: str) -> int:
resource_mapping = get_resource_mapping(dataset_name)
if resource_mapping is None:
return DEFAULT_RUNTIME_RESOURCE_FACTOR
return int(resource_mapping.get(instance_id, DEFAULT_RUNTIME_RESOURCE_FACTOR))

View File

@ -0,0 +1,909 @@
import asyncio
import copy
import json
import os
import tempfile
from typing import Any, Literal
import numpy as np
import pandas as pd
import toml
from datasets import load_dataset
from jinja2 import Environment, FileSystemLoader
import openhands.agenthub
from evaluation.benchmarks.nocode_bench.binary_patch_utils import (
remove_binary_diffs,
remove_binary_files_from_git,
)
from evaluation.benchmarks.nocode_bench.consistants import MAP_REPO_TO_CONFIG
from evaluation.benchmarks.nocode_bench.resource.mapping import (
get_instance_resource_factor,
)
from evaluation.benchmarks.nocode_bench.scripts.utils.evaluation_utils import (
run_evaluation_nocode_bench,
)
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
assert_and_raise,
codeact_user_response,
get_default_sandbox_config_for_eval,
get_metrics,
is_fatal_evaluation_error,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
update_llm_config_for_completions_logging,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AgentConfig,
OpenHandsConfig,
get_evaluation_parser,
get_llm_config_arg,
)
from openhands.core.config.condenser_config import NoOpCondenserConfig
from openhands.core.config.utils import get_condenser_config_arg
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.critic import AgentFinishedCritic
from openhands.events.action import CmdRunAction, FileReadAction, MessageAction
from openhands.events.observation import (
CmdOutputObservation,
ErrorObservation,
FileReadObservation,
)
from openhands.events.serialization.event import event_from_dict, event_to_dict
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
from openhands.utils.shutdown_listener import sleep_if_should_continue
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'true'
ENABLE_LLM_EDITOR = os.environ.get('ENABLE_LLM_EDITOR', 'false').lower() == 'true'
BenchMode = Literal['swe', 'swt', 'swt-ci']
# Global variable to track dataset type
DATASET_TYPE = 'nc_bench'
def set_dataset_type(dataset_name: str) -> str:
"""Set dataset type based on dataset name."""
global DATASET_TYPE
DATASET_TYPE = 'nc_bench'
logger.info(f'Dataset type set to: {DATASET_TYPE}')
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
def _get_swebench_workspace_dir_name(instance: pd.Series) -> str:
return f'{instance.repo.split("/")[-1]}'
def get_instruction(instance: pd.Series, metadata: EvalMetadata) -> MessageAction:
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
metadata.details['mode']
# Determine the template file based on mode and LLM
template_name = 'nc.j2'
# Set up Jinja2 environment
# Assuming templates are in 'evaluation/benchmarks/swe_bench/prompts' relative to this script
prompts_dir = os.path.join(os.path.dirname(__file__), 'prompts')
env = Environment(loader=FileSystemLoader(prompts_dir))
template = env.get_template(template_name)
# Prepare context for rendering
context = {
'instance': instance,
'workspace_dir_name': workspace_dir_name,
'metadata': metadata, # Pass metadata if needed in templates
}
context['test_instructions'] = '' # Ensure it's defined for other modes
# Render the instruction
instruction = template.render(context)
if RUN_WITH_BROWSING:
instruction += (
'<IMPORTANT!>\nYou SHOULD NEVER attempt to browse the web. </IMPORTANT!>\n'
)
if 'image_assets' in instance:
assets = json.loads(instance['image_assets'])
assert 'problem_statement' in assets, (
'problem_statement is required in image_assets'
)
image_urls = assets['problem_statement']
return MessageAction(content=instruction, image_urls=image_urls)
return MessageAction(content=instruction)
DEFAULT_DOCKER_IMAGE_PREFIX = os.environ.get(
'EVAL_DOCKER_IMAGE_PREFIX', 'docker.io/xingyaoww/'
)
logger.info(f'Default docker image prefix: {DEFAULT_DOCKER_IMAGE_PREFIX}')
def get_instance_docker_image(
instance_id: str,
swebench_official_image: bool = False,
) -> str:
if swebench_official_image:
# Official NoCode-Bench image
image_name = f'ncbench_{instance_id}:latest'.lower()
logger.debug(f'Using official NoCode-Bench image: {image_name}')
return image_name
else:
raise
def get_config(
instance: pd.Series,
metadata: EvalMetadata,
) -> OpenHandsConfig:
# We use a different instance image for the each instance of NoCode-bench eval
use_swebench_official_image = True
base_container_image = get_instance_docker_image(
instance['instance_id'],
swebench_official_image=use_swebench_official_image,
)
logger.info(
f'Using instance container image: {base_container_image}. '
f'Please make sure this image exists. '
f'Submit an issue on https://github.com/All-Hands-AI/OpenHands if you run into any issues.'
)
sandbox_config = get_default_sandbox_config_for_eval()
sandbox_config.base_container_image = base_container_image
sandbox_config.enable_auto_lint = True
sandbox_config.use_host_network = False
# Add platform to the sandbox config to solve issue 4401
sandbox_config.platform = 'linux/amd64'
sandbox_config.remote_runtime_resource_factor = get_instance_resource_factor(
dataset_name=metadata.dataset,
instance_id=instance['instance_id'],
)
config = OpenHandsConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
max_iterations=metadata.max_iterations,
runtime=os.environ.get('RUNTIME', 'docker'),
sandbox=sandbox_config,
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(
update_llm_config_for_completions_logging(
metadata.llm_config, metadata.eval_output_dir, instance['instance_id']
)
)
# get 'draft_editor' config if exists
config.set_llm_config(get_llm_config_arg('draft_editor'), 'draft_editor')
agent_config = AgentConfig(
enable_jupyter=False,
enable_browsing=RUN_WITH_BROWSING,
enable_llm_editor=ENABLE_LLM_EDITOR,
enable_mcp=False,
condenser=metadata.condenser_config,
enable_prompt_extensions=False,
)
config.set_agent_config(agent_config)
return config
def make_serializable(obj):
if isinstance(obj, pd.Series):
obj = obj.to_dict()
if isinstance(obj, dict):
return {k: make_serializable(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [make_serializable(v) for v in obj]
elif isinstance(obj, tuple):
return tuple(make_serializable(v) for v in obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, pd.Timestamp):
return str(obj)
else:
return obj
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
metadata: EvalMetadata,
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Initialization Fn')
logger.info('-' * 30)
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
obs: CmdOutputObservation
# Set instance id and git configuration
action = CmdRunAction(
command=f"""echo 'export SWE_INSTANCE_ID={instance['instance_id']}' >> ~/.bashrc && echo 'export PIP_CACHE_DIR=~/.cache/pip' >> ~/.bashrc && echo "alias git='git --no-pager'" >> ~/.bashrc && git config --global core.pager "" && git config --global diff.binary false"""
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to export SWE_INSTANCE_ID and configure git: {str(obs)}',
)
action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}')
# inject the init script
script_dir = os.path.dirname(__file__)
# inject the instance info
action = CmdRunAction(command='mkdir -p /swe_util/eval_data/instances')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to create /swe_util/eval_data/instances: {str(obs)}',
)
swe_instance_json_name = 'swe-bench-instance.json'
with tempfile.TemporaryDirectory() as temp_dir:
# Construct the full path for the desired file name within the temporary directory
temp_file_path = os.path.join(temp_dir, swe_instance_json_name)
# Write to the file with the desired name within the temporary directory
with open(temp_file_path, 'w') as f:
if not isinstance(instance, dict):
instance_dict = make_serializable(instance)
else:
instance_dict = dict(instance)
if DATASET_TYPE == 'nc_bench':
config = MAP_REPO_TO_CONFIG.get(instance['repo'], {}).get(
instance['version'], []
)
docker_conda_env_name = config['conda_env']
instance_dict['conda_env'] = docker_conda_env_name
json.dump([instance_dict], f)
# Copy the file to the desired location
runtime.copy_to(temp_file_path, '/swe_util/eval_data/instances/')
# inject the instance swe entry
entry_script_path = 'instance_nc_entry.sh'
runtime.copy_to(
str(os.path.join(script_dir, f'scripts/setup/{entry_script_path}')),
'/swe_util/',
)
action = CmdRunAction(command='cat ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to cat ~/.bashrc: {str(obs)}')
action = CmdRunAction(command='source ~/.bashrc')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, ErrorObservation):
logger.error(f'Failed to source ~/.bashrc: {str(obs)}')
assert_and_raise(obs.exit_code == 0, f'Failed to source ~/.bashrc: {str(obs)}')
action = CmdRunAction(command=f'source /swe_util/{entry_script_path}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to source /swe_util/{entry_script_path}: {str(obs)}',
)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git reset --hard')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to git reset --hard: {str(obs)}')
action = CmdRunAction(
command='for remote_name in $(git remote); do git remote remove "${remote_name}"; done'
)
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(obs.exit_code == 0, f'Failed to remove git remotes: {str(obs)}')
if DATASET_TYPE != 'Multimodal' and DATASET_TYPE != 'SWE-bench-Live':
# Only for non-multimodal datasets, we need to activate the testbed environment for Python
# SWE-Bench multimodal datasets and SWE-bench-Live are not using the testbed environment
action = CmdRunAction(command='which python')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
obs.exit_code == 0,
f'Expected to find python interpreter, but got: {str(obs)}',
)
logger.info('-' * 30)
logger.info('END Runtime Initialization Fn')
logger.info('-' * 30)
def complete_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required, but it is used to get the workspace_dir_name
) -> dict[str, Any]:
"""Complete the runtime for the agent.
This function is called before the runtime is used to run the agent.
If you need to do something in the sandbox to get the correctness metric after
the agent has run, modify this function.
"""
logger.info('-' * 30)
logger.info('BEGIN Runtime Completion Fn')
logger.info('-' * 30)
obs: CmdOutputObservation
workspace_dir_name = _get_swebench_workspace_dir_name(instance)
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code == -1:
# The previous command is still running
# We need to kill previous command
logger.info('The previous command is still running, trying to kill it...')
action = CmdRunAction(command='C-c')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# Then run the command again
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if obs.exit_code == -1:
# The previous command is still running
# We need to kill previous command
logger.info('The previous command is still running, trying to ctrl+z it...')
action = CmdRunAction(command='C-z')
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
# Then run the command again
action = CmdRunAction(command=f'cd /workspace/{workspace_dir_name}')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to cd to /workspace/{workspace_dir_name}: {str(obs)}',
)
action = CmdRunAction(command='git config --global core.pager ""')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git config --global core.pager "": {str(obs)}',
)
# First check for any git repositories in subdirectories
action = CmdRunAction(command='find . -type d -name .git -not -path "./.git"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to find git repositories: {str(obs)}',
)
git_dirs = [p for p in obs.content.strip().split('\n') if p]
if git_dirs:
# Remove all .git directories in subdirectories
for git_dir in git_dirs:
action = CmdRunAction(command=f'rm -rf "{git_dir}"')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to remove git directory {git_dir}: {str(obs)}',
)
# add all files
action = CmdRunAction(command='git add -A')
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to git add -A: {str(obs)}',
)
# Remove binary files from git staging
action = CmdRunAction(command=remove_binary_files_from_git())
action.set_hard_timeout(600)
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
assert_and_raise(
isinstance(obs, CmdOutputObservation) and obs.exit_code == 0,
f'Failed to remove binary files: {str(obs)}',
)
n_retries = 0
git_patch = None
while n_retries < 5:
action = CmdRunAction(
command=f'git diff --no-color --cached {instance["base_commit"]} > patch.diff'
)
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
n_retries += 1
if isinstance(obs, CmdOutputObservation):
if obs.exit_code == 0:
# Read the patch file
action = FileReadAction(path='patch.diff')
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
if isinstance(obs, FileReadObservation):
git_patch = obs.content
break
elif isinstance(obs, ErrorObservation):
# Fall back to cat "patch.diff" to get the patch
assert 'File could not be decoded as utf-8' in obs.content
action = CmdRunAction(command='cat patch.diff')
action.set_hard_timeout(max(300 + 100 * n_retries, 600))
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert isinstance(obs, CmdOutputObservation) and obs.exit_code == 0
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
git_patch = obs.content
break
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
else:
logger.info('Failed to get git diff, retrying...')
sleep_if_should_continue(10)
elif isinstance(obs, ErrorObservation):
logger.error(f'Error occurred: {obs.content}. Retrying...')
sleep_if_should_continue(10)
else:
assert_and_raise(False, f'Unexpected observation type: {str(obs)}')
assert_and_raise(git_patch is not None, 'Failed to get git diff (None)')
# Remove binary diffs from the patch
git_patch = remove_binary_diffs(git_patch)
logger.info('-' * 30)
logger.info('END Runtime Completion Fn')
logger.info('-' * 30)
return {'git_patch': git_patch}
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
runtime_failure_count: int = 0,
) -> EvalOutput:
config = get_config(instance, metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
# Increase resource_factor with increasing attempt_id
if runtime_failure_count > 0:
config.sandbox.remote_runtime_resource_factor = min(
config.sandbox.remote_runtime_resource_factor * (2**runtime_failure_count),
8,
)
logger.warning(
f'This is the {runtime_failure_count + 1}th attempt for instance {instance.instance_id}, setting resource factor to {config.sandbox.remote_runtime_resource_factor}'
)
metadata = copy.deepcopy(metadata)
metadata.details['runtime_failure_count'] = runtime_failure_count
metadata.details['remote_runtime_resource_factor'] = (
config.sandbox.remote_runtime_resource_factor
)
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance, metadata)
message_action = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=message_action,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if is_fatal_evaluation_error(state.last_error):
raise EvalException('Fatal error detected: ' + state.last_error)
# ======= THIS IS SWE-Bench specific =======
# Get git patch
if DATASET_TYPE == 'SWE-bench-Live':
from evaluation.benchmarks.swe_bench.live_utils import (
complete_runtime as complete_runtime_fn,
)
else:
complete_runtime_fn = complete_runtime
return_val = complete_runtime_fn(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
finally:
runtime.close()
# ==========================================
# ======= Attempt to evaluate the agent's edits =======
# we use eval_infer.sh to evaluate the agent's edits, not here
# because the agent may alter the environment / testcases
test_result = {
'git_patch': git_patch,
}
# If you are working on some simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# NOTE: this is NO LONGER the event stream, but an agent history that includes delegate agent's events
histories = [event_to_dict(event) for event in state.history]
metrics = get_metrics(state)
# Save the output
instruction = message_action.content
if message_action.image_urls:
instruction += (
'\n\n<image_urls>' + '\n'.join(message_action.image_urls) + '</image_urls>'
)
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(), # SWE Bench specific
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
def filter_dataset(dataset: pd.DataFrame, filter_column: str) -> pd.DataFrame:
file_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.toml')
if os.path.exists(file_path):
with open(file_path, 'r') as file:
data = toml.load(file)
if 'selected_ids' in data:
selected_ids = data['selected_ids']
logger.info(
f'Filtering {len(selected_ids)} tasks from "selected_ids"...'
)
subset = dataset[dataset[filter_column].isin(selected_ids)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
if 'selected_repos' in data:
# repos for the swe-bench instances:
# ['astropy/astropy', 'django/django', 'matplotlib/matplotlib', 'mwaskom/seaborn', 'pallets/flask', 'psf/requests', 'pydata/xarray', 'pylint-dev/pylint', 'pytest-dev/pytest', 'scikit-learn/scikit-learn', 'sphinx-doc/sphinx', 'sympy/sympy']
selected_repos = data['selected_repos']
if isinstance(selected_repos, str):
selected_repos = [selected_repos]
assert isinstance(selected_repos, list)
logger.info(
f'Filtering {selected_repos} tasks from "selected_repos"...'
)
subset = dataset[dataset['repo'].isin(selected_repos)]
logger.info(f'Retained {subset.shape[0]} tasks after filtering')
return subset
skip_ids = os.environ.get('SKIP_IDS', '').split(',')
if len(skip_ids) > 0:
logger.info(f'Filtering {len(skip_ids)} tasks from "SKIP_IDS"...')
return dataset[~dataset[filter_column].isin(skip_ids)]
return dataset
if __name__ == '__main__':
parser = get_evaluation_parser()
parser.add_argument(
'--dataset',
type=str,
default='NoCode-bench/NoCode-bench_Verified',
help='data set to evaluate on, either full-test or lite-test',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
parser.add_argument(
'--mode',
type=str,
default='swe',
choices=['swe', 'swt', 'swt-ci'],
help="mode to run the evaluation, either 'swe', 'swt', or 'swt-ci'",
)
args, _ = parser.parse_known_args()
# NOTE: It is preferable to load datasets from huggingface datasets and perform post-processing
# so we don't need to manage file uploading to OpenHands's repo
dataset = load_dataset(args.dataset, args.split)
# Set the global dataset type based on dataset name
set_dataset_type(args.dataset)
swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
logger.info(
f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks'
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
# Get condenser config from environment variable
condenser_name = os.environ.get('EVAL_CONDENSER')
if condenser_name:
condenser_config = get_condenser_config_arg(condenser_name)
if condenser_config is None:
raise ValueError(
f'Could not find Condenser config: EVAL_CONDENSER={condenser_name}'
)
else:
# If no specific condenser config is provided via env var, default to NoOpCondenser
condenser_config = NoOpCondenserConfig()
logger.debug(
'No Condenser config provided via EVAL_CONDENSER, using NoOpCondenser.'
)
details = {'mode': args.mode}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
condenser_config=condenser_config,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
print(f'### OUTPUT FILE: {output_file} ###')
# Run evaluation in iterative mode:
# If a rollout fails to output AgentFinishAction, we will try again until it succeeds OR total 3 attempts have been made.
ITERATIVE_EVAL_MODE = (
os.environ.get('ITERATIVE_EVAL_MODE', 'false').lower() == 'true'
)
ITERATIVE_EVAL_MODE_MAX_ATTEMPTS = int(
os.environ.get('ITERATIVE_EVAL_MODE_MAX_ATTEMPTS', '3')
)
if not ITERATIVE_EVAL_MODE:
# load the dataset
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
if len(instances) > 0 and not isinstance(
instances['PASS2PASS'][instances['PASS2PASS'].index[0]], str
):
for col in ['PASS2PASS', 'FAIL2PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
run_evaluation_nocode_bench(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
else:
critic = AgentFinishedCritic()
def get_cur_output_file_path(attempt: int) -> str:
return (
f'{output_file.removesuffix(".jsonl")}.critic_attempt_{attempt}.jsonl'
)
eval_ids = None
for attempt in range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1):
cur_output_file = get_cur_output_file_path(attempt)
logger.info(
f'Running evaluation with critic {critic.__class__.__name__} for attempt {attempt} of {ITERATIVE_EVAL_MODE_MAX_ATTEMPTS}.'
)
# For deterministic eval, we set temperature to 0.1 for (>1) attempt
# so hopefully we get slightly different results
if attempt > 1 and metadata.llm_config.temperature == 0:
logger.info(
f'Detected temperature is 0 for (>1) attempt {attempt}. Setting temperature to 0.1...'
)
metadata.llm_config.temperature = 0.1
# Load instances - at first attempt, we evaluate all instances
# On subsequent attempts, we only evaluate the instances that failed the previous attempt determined by critic
instances = prepare_dataset(
swe_bench_tests, cur_output_file, args.eval_n_limit, eval_ids=eval_ids
)
if len(instances) > 0 and not isinstance(
instances['PASS2PASS'][instances['PASS2PASS'].index[0]], str
):
for col in ['PASS2PASS', 'FAIL2PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
# Run evaluation - but save them to cur_output_file
logger.info(
f'Evaluating {len(instances)} instances for attempt {attempt}...'
)
run_evaluation_nocode_bench(
instances,
metadata,
cur_output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
# When eval is done, we update eval_ids to the instances that failed the current attempt
instances_failed = []
logger.info(
f'Use critic {critic.__class__.__name__} to check {len(instances)} instances for attempt {attempt}...'
)
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
try:
history = [
event_from_dict(event) for event in instance['history']
]
critic_result = critic.evaluate(
history, instance['test_result'].get('git_patch', '')
)
if not critic_result.success:
instances_failed.append(instance['instance_id'])
except Exception as e:
logger.error(
f'Error loading history for instance {instance["instance_id"]}: {e}'
)
instances_failed.append(instance['instance_id'])
logger.info(
f'{len(instances_failed)} instances failed the current attempt {attempt}: {instances_failed}'
)
eval_ids = instances_failed
# If no instances failed, we break
if len(instances_failed) == 0:
break
# Then we should aggregate the results from all attempts into the original output file
# and remove the intermediate files
logger.info(
'Aggregating results from all attempts into the original output file...'
)
fout = open(output_file, 'w')
added_instance_ids = set()
for attempt in reversed(range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1)):
cur_output_file = get_cur_output_file_path(attempt)
if not os.path.exists(cur_output_file):
logger.warning(
f'Intermediate output file {cur_output_file} does not exist. Skipping...'
)
continue
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
# Also make sure git_patch is not empty - otherwise we fall back to previous attempt (empty patch is worse than anything else)
if (
instance['instance_id'] not in added_instance_ids
and instance['test_result'].get('git_patch', '').strip()
):
fout.write(line)
added_instance_ids.add(instance['instance_id'])
logger.info(
f'Aggregated instances from {cur_output_file}. Total instances added so far: {len(added_instance_ids)}'
)
fout.close()
logger.info(
f'Done! Total {len(added_instance_ids)} instances added to {output_file}'
)

View File

@ -0,0 +1,33 @@
import argparse
import json
def main(output_jsonl: str):
with open(output_jsonl, 'r') as f:
for line in f:
try:
output = json.loads(line)
pred = {
'instance_id': output['instance_id'],
'model_name_or_path': output['metadata']['llm_config']['model'],
'model_patch': output['test_result']['git_patch'],
}
except Exception as e:
print(
f'Error while reading output of instance {output["instance_id"]}: {e}'
)
print(json.dumps(pred))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--output_jsonl',
type=str,
required=True,
help='Path to the prediction file (.../outputs.jsonl)',
)
args = parser.parse_args()
main(args.output_jsonl)

View File

@ -0,0 +1,104 @@
import argparse
import pandas as pd
from openhands.core.logger import openhands_logger as logger
def verify_instance_costs(row: pd.Series) -> float:
"""
Verifies that the accumulated_cost matches the sum of individual costs in metrics.
Also checks for duplicate consecutive costs which might indicate buggy counting.
If the consecutive costs are identical, the file is affected by this bug:
https://github.com/All-Hands-AI/OpenHands/issues/5383
Args:
row: DataFrame row containing instance data with metrics
Returns:
float: The verified total cost for this instance (corrected if needed)
"""
try:
metrics = row.get('metrics')
if not metrics:
logger.warning(f'Instance {row["instance_id"]}: No metrics found')
return 0.0
accumulated = metrics.get('accumulated_cost')
costs = metrics.get('costs', [])
if accumulated is None:
logger.warning(
f'Instance {row["instance_id"]}: No accumulated_cost in metrics'
)
return 0.0
# Check for duplicate consecutive costs and systematic even-odd pairs
has_duplicate = False
all_pairs_match = True
# Check each even-odd pair (0-1, 2-3, etc.)
for i in range(0, len(costs) - 1, 2):
if abs(costs[i]['cost'] - costs[i + 1]['cost']) < 1e-6:
has_duplicate = True
logger.debug(
f'Instance {row["instance_id"]}: Possible buggy double-counting detected! '
f'Steps {i} and {i + 1} have identical costs: {costs[i]["cost"]:.2f}'
)
else:
all_pairs_match = False
break
# Calculate total cost, accounting for buggy double counting if detected
if len(costs) >= 2 and has_duplicate and all_pairs_match:
paired_steps_cost = sum(
cost_entry['cost']
for cost_entry in costs[: -1 if len(costs) % 2 else None]
)
real_paired_cost = paired_steps_cost / 2
unpaired_cost = costs[-1]['cost'] if len(costs) % 2 else 0
total_cost = real_paired_cost + unpaired_cost
else:
total_cost = sum(cost_entry['cost'] for cost_entry in costs)
if not abs(total_cost - accumulated) < 1e-6:
logger.warning(
f'Instance {row["instance_id"]}: Cost mismatch: '
f'accumulated: {accumulated:.2f}, sum of costs: {total_cost:.2f}, '
)
return total_cost
except Exception as e:
logger.error(
f'Error verifying costs for instance {row.get("instance_id", "UNKNOWN")}: {e}'
)
return 0.0
def main():
parser = argparse.ArgumentParser(
description='Verify costs in SWE-bench output file'
)
parser.add_argument(
'input_filepath', type=str, help='Path to the output.jsonl file'
)
args = parser.parse_args()
try:
# Load and verify the JSONL file
df = pd.read_json(args.input_filepath, lines=True)
logger.info(f'Loaded {len(df)} instances from {args.input_filepath}')
# Verify costs for each instance and sum up total
total_cost = df.apply(verify_instance_costs, axis=1).sum()
logger.info(f'Total verified cost across all instances: ${total_cost:.2f}')
except Exception as e:
logger.error(f'Failed to process file: {e}')
raise
if __name__ == '__main__':
main()

View File

@ -0,0 +1,146 @@
#!/usr/bin/env bash
set -eo pipefail
source "evaluation/utils/version_control.sh"
MODEL_CONFIG=$1
COMMIT_HASH=$2
AGENT=$3
EVAL_LIMIT=$4
MAX_ITER=$5
NUM_WORKERS=$6
DATASET=$7
SPLIT=$8
N_RUNS=$9
MODE=${10}
if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
if [ -z "$MAX_ITER" ]; then
echo "MAX_ITER not specified, use default 100"
MAX_ITER=100
fi
if [ -z "$RUN_WITH_BROWSING" ]; then
echo "RUN_WITH_BROWSING not specified, use default false"
RUN_WITH_BROWSING=false
fi
if [ -z "$DATASET" ]; then
echo "DATASET not specified, use default princeton-nlp/SWE-bench_Lite"
DATASET="princeton-nlp/SWE-bench_Lite"
fi
if [ -z "$SPLIT" ]; then
echo "SPLIT not specified, use default test"
SPLIT="test"
fi
if [ -z "$MODE" ]; then
MODE="swe"
echo "MODE not specified, use default $MODE"
fi
if [ -n "$EVAL_CONDENSER" ]; then
echo "Using Condenser Config: $EVAL_CONDENSER"
else
echo "No Condenser Config provided via EVAL_CONDENSER, use default (NoOpCondenser)."
fi
export RUN_WITH_BROWSING=$RUN_WITH_BROWSING
echo "RUN_WITH_BROWSING: $RUN_WITH_BROWSING"
get_openhands_version
echo "AGENT: $AGENT"
echo "OPENHANDS_VERSION: $OPENHANDS_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
echo "DATASET: $DATASET"
echo "SPLIT: $SPLIT"
echo "MAX_ITER: $MAX_ITER"
echo "NUM_WORKERS: $NUM_WORKERS"
echo "COMMIT_HASH: $COMMIT_HASH"
echo "MODE: $MODE"
echo "EVAL_CONDENSER: $EVAL_CONDENSER"
# Default to NOT use Hint
if [ -z "$USE_HINT_TEXT" ]; then
export USE_HINT_TEXT=false
fi
echo "USE_HINT_TEXT: $USE_HINT_TEXT"
EVAL_NOTE="$OPENHANDS_VERSION"
# if not using Hint, add -no-hint to the eval note
if [ "$USE_HINT_TEXT" = false ]; then
EVAL_NOTE="$EVAL_NOTE-no-hint"
fi
if [ "$RUN_WITH_BROWSING" = true ]; then
EVAL_NOTE="$EVAL_NOTE-with-browsing"
fi
if [ -n "$EXP_NAME" ]; then
EVAL_NOTE="$EVAL_NOTE-$EXP_NAME"
fi
# if mode != swe, add mode to the eval note
if [ "$MODE" != "swe" ]; then
EVAL_NOTE="${EVAL_NOTE}-${MODE}"
fi
# Add condenser config to eval note if provided
if [ -n "$EVAL_CONDENSER" ]; then
EVAL_NOTE="${EVAL_NOTE}-${EVAL_CONDENSER}"
fi
function run_eval() {
local eval_note="${1}"
COMMAND="poetry run python evaluation/benchmarks/nocode_bench/run_infer_nc.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations $MAX_ITER \
--eval-num-workers $NUM_WORKERS \
--eval-note $eval_note \
--dataset $DATASET \
--split $SPLIT \
--mode $MODE"
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
# Run the command
eval $COMMAND
}
unset SANDBOX_ENV_GITHUB_TOKEN # prevent the agent from using the github token to push
if [ -z "$N_RUNS" ]; then
N_RUNS=1
echo "N_RUNS not specified, use default $N_RUNS"
fi
# Skip runs if the run number is in the SKIP_RUNS list
# read from env variable SKIP_RUNS as a comma separated list of run numbers
SKIP_RUNS=(${SKIP_RUNS//,/ })
for i in $(seq 1 $N_RUNS); do
if [[ " ${SKIP_RUNS[@]} " =~ " $i " ]]; then
echo "Skipping run $i"
continue
fi
current_eval_note="$EVAL_NOTE-run_$i"
echo "EVAL_NOTE: $current_eval_note"
run_eval $current_eval_note
done
checkout_original_branch

View File

@ -0,0 +1,54 @@
"""This script compares gold patches with OpenHands-generated patches and check whether
OpenHands found the right (set of) files to modify.
"""
import argparse
import json
import re
def extract_modified_files(patch):
modified_files = set()
file_pattern = re.compile(r'^diff --git a/(.*?) b/')
for line in patch.split('\n'):
match = file_pattern.match(line)
if match:
modified_files.add(match.group(1))
return modified_files
def process_report(oh_output_file):
succ = 0
fail = 0
for line in open(oh_output_file):
line = json.loads(line)
instance_id = line['instance_id']
gold_patch = line['swe_instance']['patch']
generated_patch = line['git_patch']
gold_modified_files = extract_modified_files(gold_patch)
# swe-bench lite only: a gold patch always contains exactly one file
assert len(gold_modified_files) == 1
generated_modified_files = extract_modified_files(generated_patch)
# Check if all files in gold_patch are also in generated_patch
all_files_in_generated = gold_modified_files.issubset(generated_modified_files)
if all_files_in_generated:
succ += 1
else:
fail += 1
print(
f'{instance_id}: file mismatch, gold = {gold_modified_files}, generated = {generated_modified_files}'
)
print(
f'\nSUMMARY: {succ} out of {succ + fail} instances found correct files to edit, success rate = {succ / float(succ + fail)}'
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--oh_output_file', help='Path to the OH output file')
args = parser.parse_args()
process_report(args.oh_output_file)

View File

@ -0,0 +1,53 @@
#!/usr/bin/env bash
source ~/.bashrc
SWEUTIL_DIR=/swe_util
if [ -z "$SWE_INSTANCE_ID" ]; then
echo "Error: SWE_INSTANCE_ID is not set." >&2
exit 1
fi
item=$(jq --arg INSTANCE_ID "$SWE_INSTANCE_ID" '.[] | select(.instance_id == $INSTANCE_ID)' $SWEUTIL_DIR/eval_data/instances/swe-bench-instance.json)
if [[ -z "$item" ]]; then
echo "No item found for the provided instance ID."
exit 1
fi
REPO_NAME=$(echo "$item" | jq -r '.repo | split("/")[-1]')
WORKSPACE_NAME="$REPO_NAME"
echo "WORKSPACE_NAME: $WORKSPACE_NAME"
# Clear the workspace
if [ -d /workspace ]; then
rm -rf /workspace/*
else
mkdir /workspace
fi
# Copy repo to workspace
if [ -d /workspace/$WORKSPACE_NAME ]; then
rm -rf /workspace/$WORKSPACE_NAME
fi
mkdir -p /workspace
SRC_DIR="/root/$REPO_NAME"
DEST_DIR="/workspace/$WORKSPACE_NAME"
cp -r "$SRC_DIR" "$DEST_DIR"
echo ">> Extracting conda environment name..."
CONDA_ENV_NAME=$(echo "$item" | jq -r '.conda_env // empty')
# Activate instance-specific environment
if [ -d /opt/miniconda3 ]; then
. /opt/miniconda3/etc/profile.d/conda.sh
conda activate $CONDA_ENV_NAME
fi

View File

@ -0,0 +1,154 @@
import json
import multiprocessing as mp
from typing import Awaitable, Callable, TextIO
import numpy as np
import pandas as pd
from pydantic import SecretStr
from tqdm import tqdm
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
_process_instance_wrapper,
_process_instance_wrapper_mp,
)
from openhands.core.logger import openhands_logger as logger
def update_progress_nc(
result: EvalOutput,
pbar: tqdm,
output_fp: TextIO,
):
"""Update the progress bar and write the result to the output file."""
pbar.update(1)
pbar.set_description(f'Instance {result.instance_id}')
pbar.set_postfix_str(f'Test Result: {str(result.test_result)[:300]}...')
logger.info(
f'Finished evaluation for instance {result.instance_id}: '
f'{str(result.test_result)[:300]}...\n'
)
def make_serializable(obj):
if isinstance(obj, pd.Series):
return make_serializable(obj.to_dict())
if isinstance(obj, dict):
return {k: make_serializable(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple, set)):
converted = [make_serializable(v) for v in obj]
if isinstance(obj, list):
return converted
elif isinstance(obj, tuple):
return tuple(converted)
else: # set
return converted
elif isinstance(obj, np.ndarray):
return obj.tolist()
elif isinstance(obj, np.generic):
return obj.item()
elif isinstance(obj, pd.Timestamp):
return obj.isoformat()
elif SecretStr is not None and isinstance(obj, SecretStr):
return str(obj)
else:
return obj
try:
raw_data = result.model_dump(mode='python', round_trip=False)
safe_data = make_serializable(raw_data)
output_fp.write(json.dumps(safe_data, ensure_ascii=False) + '\n')
output_fp.flush()
except Exception as e:
logger.error(f'Failed to write full result: {e}')
fallback = {
'instance_id': result.instance_id,
'model_patch': result.test_result.get('git_patch', ''),
}
try:
output_fp.write(json.dumps(fallback, ensure_ascii=False) + '\n')
output_fp.flush()
logger.info(
f'Wrote fallback result for instance {result.instance_id}: only instance_id and model_patch.'
)
except Exception as e2:
logger.error(f'Failed to write fallback result: {e2}')
def cleanup():
print('Cleaning up child processes...')
for process in mp.active_children():
print(f'Terminating child process: {process.name}')
process.terminate()
process.join()
def run_evaluation_nocode_bench(
dataset: pd.DataFrame,
metadata: EvalMetadata | None,
output_file: str,
num_workers: int,
process_instance_func: Callable[
[pd.Series, EvalMetadata, bool], Awaitable[EvalOutput]
],
max_retries: int = 5, # number of retries for each instance
timeout_seconds: int | None = None,
):
use_multiprocessing = num_workers > 1
if metadata is not None:
logger.info(
f'Evaluation started with Agent {metadata.agent_class}:\n'
f'model {metadata.llm_config.model}, max iterations {metadata.max_iterations}.\n'
)
else:
logger.warning('Running evaluation without metadata.')
logger.info(f'Evaluation started with {num_workers} workers.')
total_instances = len(dataset)
pbar = tqdm(total=total_instances, desc='Instances processed')
output_fp = open(output_file, 'a')
try:
if use_multiprocessing:
with mp.Pool(num_workers) as pool:
args_iter = (
(
process_instance_func,
instance,
metadata,
True,
max_retries,
timeout_seconds,
)
for _, instance in dataset.iterrows()
)
results = pool.imap_unordered(_process_instance_wrapper_mp, args_iter)
for result in results:
update_progress_nc(result, pbar, output_fp)
else:
for _, instance in dataset.iterrows():
result = _process_instance_wrapper(
process_instance_func=process_instance_func,
instance=instance,
metadata=metadata,
use_mp=False,
max_retries=max_retries,
)
update_progress_nc(result, pbar, output_fp)
except KeyboardInterrupt:
print('\nKeyboardInterrupt received. Cleaning up...\n')
cleanup()
output_fp.close()
logger.info('\nEvaluation finished.\n')