Expose accumulate and llm_metric from eventstream (backend) (#7082)

Co-authored-by: Engel Nyst <enyst@users.noreply.github.com>
This commit is contained in:
AutoLTX 2025-03-11 19:18:08 +08:00 committed by GitHub
parent 2cb5b91300
commit 5e521a4a6e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 262 additions and 3 deletions

View File

@ -53,6 +53,7 @@ from openhands.events.observation import (
)
from openhands.events.serialization.event import event_to_trajectory, truncate_content
from openhands.llm.llm import LLM
from openhands.llm.metrics import Metrics, TokenUsage
# note: RESUME is only available on web GUI
TRAFFIC_CONTROL_REMINDER = (
@ -733,6 +734,10 @@ class AgentController:
== ActionConfirmationStatus.AWAITING_CONFIRMATION
):
await self.set_agent_state_to(AgentState.AWAITING_USER_CONFIRMATION)
# Create and log metrics for frontend display
self._prepare_metrics_for_frontend(action)
self.event_stream.add_event(action, action._source) # type: ignore [attr-defined]
await self.update_state_after_step()
@ -1086,6 +1091,44 @@ class AgentController:
return self._stuck_detector.is_stuck(self.headless_mode)
def _prepare_metrics_for_frontend(self, action: Action) -> None:
"""Create a minimal metrics object for frontend display and log it.
To avoid performance issues with long conversations, we only keep:
- accumulated_cost: The current total cost
- latest token_usage: Token statistics from the most recent API call
Args:
action: The action to attach metrics to
"""
metrics = Metrics(model_name=self.agent.llm.metrics.model_name)
metrics.accumulated_cost = self.agent.llm.metrics.accumulated_cost
if self.agent.llm.metrics.token_usages:
latest_usage = self.agent.llm.metrics.token_usages[-1]
metrics.add_token_usage(
prompt_tokens=latest_usage.prompt_tokens,
completion_tokens=latest_usage.completion_tokens,
cache_read_tokens=latest_usage.cache_read_tokens,
cache_write_tokens=latest_usage.cache_write_tokens,
response_id=latest_usage.response_id,
)
action.llm_metrics = metrics
# Log the metrics information for frontend display
log_usage: TokenUsage | None = (
metrics.token_usages[-1] if metrics.token_usages else None
)
self.log(
'debug',
f'Action metrics - accumulated_cost: {metrics.accumulated_cost}, '
f'tokens (prompt/completion/cache_read/cache_write): '
f'{log_usage.prompt_tokens if log_usage else 0}/'
f'{log_usage.completion_tokens if log_usage else 0}/'
f'{log_usage.cache_read_tokens if log_usage else 0}/'
f'{log_usage.cache_write_tokens if log_usage else 0}',
extra={'msg_type': 'METRICS'},
)
def __repr__(self):
return (
f'AgentController(id={getattr(self, "id", "<uninitialized>")}, '

View File

@ -9,6 +9,7 @@ from openhands.events.serialization.action import action_from_dict
from openhands.events.serialization.observation import observation_from_dict
from openhands.events.serialization.utils import remove_fields
from openhands.events.tool import ToolCallMetadata
from openhands.llm.metrics import Cost, Metrics, ResponseLatency, TokenUsage
# TODO: move `content` into `extras`
TOP_KEYS = [
@ -20,8 +21,9 @@ TOP_KEYS = [
'action',
'observation',
'tool_call_metadata',
'llm_metrics',
]
UNDERSCORE_KEYS = ['id', 'timestamp', 'source', 'cause', 'tool_call_metadata']
UNDERSCORE_KEYS = ['id', 'timestamp', 'source', 'cause', 'tool_call_metadata', 'llm_metrics']
DELETE_FROM_TRAJECTORY_EXTRAS = {
'screenshot',
@ -54,6 +56,15 @@ def event_from_dict(data) -> 'Event':
value = EventSource(value)
if key == 'tool_call_metadata':
value = ToolCallMetadata(**value)
if key == 'llm_metrics':
metrics = Metrics()
if isinstance(value, dict):
metrics.accumulated_cost = value.get('accumulated_cost', 0.0)
for cost in value.get('costs', []):
metrics._costs.append(Cost(**cost))
metrics.response_latencies = [ResponseLatency(**latency) for latency in value.get('response_latencies', [])]
metrics.token_usages = [TokenUsage(**usage) for usage in value.get('token_usages', [])]
value = metrics
setattr(evt, '_' + key, value)
return evt
@ -81,6 +92,8 @@ def event_to_dict(event: 'Event') -> dict:
d['source'] = d['source'].value
if key == 'tool_call_metadata' and 'tool_call_metadata' in d:
d['tool_call_metadata'] = d['tool_call_metadata'].model_dump()
if key == 'llm_metrics' and 'llm_metrics' in d:
d['llm_metrics'] = d['llm_metrics'].get()
props.pop(key, None)
if 'security_risk' in props and props['security_risk'] is None:
props.pop('security_risk')

View File

@ -19,7 +19,7 @@ from openhands.events.observation import (
)
from openhands.events.serialization import event_to_dict
from openhands.llm import LLM
from openhands.llm.metrics import Metrics
from openhands.llm.metrics import Metrics, TokenUsage
from openhands.runtime.base import Runtime
from openhands.storage.memory import InMemoryFileStore
@ -749,3 +749,105 @@ async def test_run_controller_with_context_window_exceeded_without_truncation(
# Check that the context window exceeded error was raised during the run
assert step_state.has_errored
@pytest.mark.asyncio
async def test_action_metrics_copy():
# Setup
file_store = InMemoryFileStore({})
event_stream = EventStream(sid='test', file_store=file_store)
# Create agent with metrics
agent = MagicMock(spec=Agent)
agent.llm = MagicMock(spec=LLM)
metrics = Metrics(model_name='test-model')
metrics.accumulated_cost = 0.05
# Add multiple token usages - we should get the last one in the action
usage1 = TokenUsage(
model='test-model',
prompt_tokens=5,
completion_tokens=10,
cache_read_tokens=2,
cache_write_tokens=2,
response_id='test-id-1',
)
usage2 = TokenUsage(
model='test-model',
prompt_tokens=10,
completion_tokens=20,
cache_read_tokens=5,
cache_write_tokens=5,
response_id='test-id-2',
)
metrics.token_usages = [usage1, usage2]
# Add a cost instance - should not be included in action metrics
# This will increase accumulated_cost by 0.02
metrics.add_cost(0.02)
# Add a response latency - should not be included in action metrics
metrics.add_response_latency(0.5, 'test-id-2')
agent.llm.metrics = metrics
# Mock agent step to return an action
action = MessageAction(content='Test message')
def agent_step_fn(state):
return action
agent.step = agent_step_fn
# Create controller with correct parameters
controller = AgentController(
agent=agent,
event_stream=event_stream,
max_iterations=10,
sid='test',
confirmation_mode=False,
headless_mode=True,
)
# Execute one step
controller.state.agent_state = AgentState.RUNNING
await controller._step()
# Get the last event from event stream
events = list(event_stream.get_events())
assert len(events) > 0
last_action = events[-1]
# Verify metrics were copied correctly
assert last_action.llm_metrics is not None
assert (
last_action.llm_metrics.accumulated_cost == 0.07
) # 0.05 initial + 0.02 from add_cost
# Should include the last token usage
assert len(last_action.llm_metrics.token_usages) == 1
assert last_action.llm_metrics.token_usages[0].prompt_tokens == 10
assert last_action.llm_metrics.token_usages[0].completion_tokens == 20
assert last_action.llm_metrics.token_usages[0].cache_read_tokens == 5
assert last_action.llm_metrics.token_usages[0].cache_write_tokens == 5
assert last_action.llm_metrics.token_usages[0].response_id == 'test-id-2'
# Should not include the cost history
assert len(last_action.llm_metrics.costs) == 0
# Should not include the response latency history
assert len(last_action.llm_metrics.response_latencies) == 0
# Verify that there's no latency information in the action's metrics
# Either directly or as a calculated property
assert not hasattr(last_action.llm_metrics, 'latency')
assert not hasattr(last_action.llm_metrics, 'total_latency')
assert not hasattr(last_action.llm_metrics, 'average_latency')
# Verify it's a deep copy by modifying the original
agent.llm.metrics.accumulated_cost = 0.1
assert last_action.llm_metrics.accumulated_cost == 0.07
await controller.close()

View File

@ -1,5 +1,7 @@
from openhands.events.action import MessageAction
from openhands.events.observation import CmdOutputMetadata, CmdOutputObservation
from openhands.events.serialization import event_to_dict
from openhands.events.serialization import event_from_dict, event_to_dict
from openhands.llm.metrics import Cost, Metrics, ResponseLatency, TokenUsage
def test_command_output_success_serialization():
@ -20,3 +22,102 @@ def test_command_output_success_serialization():
)
serialized = event_to_dict(obs)
assert serialized['success'] is False
def test_metrics_basic_serialization():
# Create a basic action with only accumulated_cost
action = MessageAction(content='Hello, world!')
metrics = Metrics()
metrics.accumulated_cost = 0.03
action._llm_metrics = metrics
# Test serialization
serialized = event_to_dict(action)
assert 'llm_metrics' in serialized
assert serialized['llm_metrics']['accumulated_cost'] == 0.03
assert serialized['llm_metrics']['costs'] == []
assert serialized['llm_metrics']['response_latencies'] == []
assert serialized['llm_metrics']['token_usages'] == []
# Test deserialization
deserialized = event_from_dict(serialized)
assert deserialized.llm_metrics is not None
assert deserialized.llm_metrics.accumulated_cost == 0.03
assert len(deserialized.llm_metrics.costs) == 0
assert len(deserialized.llm_metrics.response_latencies) == 0
assert len(deserialized.llm_metrics.token_usages) == 0
def test_metrics_full_serialization():
# Create an observation with all metrics fields
obs = CmdOutputObservation(
command='ls',
content='test.txt',
metadata=CmdOutputMetadata(exit_code=0),
)
metrics = Metrics(model_name='test-model')
metrics.accumulated_cost = 0.03
# Add a cost
cost = Cost(model='test-model', cost=0.02)
metrics._costs.append(cost)
# Add a response latency
latency = ResponseLatency(model='test-model', latency=0.5, response_id='test-id')
metrics.response_latencies = [latency]
# Add token usage
usage = TokenUsage(
model='test-model',
prompt_tokens=10,
completion_tokens=20,
cache_read_tokens=0,
cache_write_tokens=0,
response_id='test-id',
)
metrics.token_usages = [usage]
obs._llm_metrics = metrics
# Test serialization
serialized = event_to_dict(obs)
assert 'llm_metrics' in serialized
metrics_dict = serialized['llm_metrics']
assert metrics_dict['accumulated_cost'] == 0.03
assert len(metrics_dict['costs']) == 1
assert metrics_dict['costs'][0]['cost'] == 0.02
assert len(metrics_dict['response_latencies']) == 1
assert metrics_dict['response_latencies'][0]['latency'] == 0.5
assert len(metrics_dict['token_usages']) == 1
assert metrics_dict['token_usages'][0]['prompt_tokens'] == 10
assert metrics_dict['token_usages'][0]['completion_tokens'] == 20
# Test deserialization
deserialized = event_from_dict(serialized)
assert deserialized.llm_metrics is not None
assert deserialized.llm_metrics.accumulated_cost == 0.03
assert len(deserialized.llm_metrics.costs) == 1
assert deserialized.llm_metrics.costs[0].cost == 0.02
assert len(deserialized.llm_metrics.response_latencies) == 1
assert deserialized.llm_metrics.response_latencies[0].latency == 0.5
assert len(deserialized.llm_metrics.token_usages) == 1
assert deserialized.llm_metrics.token_usages[0].prompt_tokens == 10
assert deserialized.llm_metrics.token_usages[0].completion_tokens == 20
def test_metrics_none_serialization():
# Test when metrics is None
obs = CmdOutputObservation(
command='ls',
content='test.txt',
metadata=CmdOutputMetadata(exit_code=0),
)
obs._llm_metrics = None
# Test serialization
serialized = event_to_dict(obs)
assert 'llm_metrics' not in serialized
# Test deserialization
deserialized = event_from_dict(serialized)
assert deserialized.llm_metrics is None