Feature/swe run interact (#8714)

Co-authored-by: Xingyao Wang <xingyao@all-hands.dev>
This commit is contained in:
Xuhui Zhou 2025-05-27 15:35:21 -04:00 committed by GitHub
parent cdb9aeb9ba
commit 14498c5e25
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 636 additions and 0 deletions

View File

@ -2,6 +2,8 @@
This folder contains the evaluation harness that we built on top of the original [SWE-Bench benchmark](https://www.swebench.com/) ([paper](https://arxiv.org/abs/2310.06770)).
**UPDATE (5/26/2025): We now support running interactive SWE-Bench evaluation (see the paper [here](https://arxiv.org/abs/2502.13069))! For how to run it, checkout [this README](./SWE-Interact.md).**
**UPDATE (4/8/2025): We now support running SWT-Bench evaluation! For more details, checkout [the corresponding section](#SWT-Bench-Evaluation).**
**UPDATE (03/27/2025): We now support SWE-Bench multimodal evaluation! Simply use "princeton-nlp/SWE-bench_Multimodal" as the dataset name in the `run_infer.sh` script to evaluate on multimodal instances.**

View File

@ -0,0 +1,92 @@
# SWE-Interact Benchmark
This document explains how to use the [Interactive SWE-Bench](https://arxiv.org/abs/2502.13069) benchmark scripts for running and evaluating interactive software engineering tasks.
## Setting things up
After following the [README](./README.md) to set up the environment, you would need to additionally add LLM configurations for simulated human users. In the original [paper](https://arxiv.org/abs/2502.13069), we use gpt-4o as the simulated human user. You can add the following to your `config.toml` file:
```toml
[llm.fake_user]
model="litellm_proxy/gpt-4o-2024-08-06"
api_key="<your-api-key>"
temperature = 0.0
base_url = "https://llm-proxy.eval.all-hands.dev"
```
## Running the Benchmark
The main script for running the benchmark is `run_infer_interact.sh`. Here's how to use it:
```bash
bash ./evaluation/benchmarks/swe_bench/scripts/run_infer_interact.sh <model_config> <commit_hash> <agent> <eval_limit> <max_iter> <num_workers> <split>
```
### Parameters:
- `model_config`: Path to the LLM configuration file (e.g., `llm.claude-3-7-sonnet`)
- `commit_hash`: Git commit hash to use (e.g., `HEAD`)
- `agent`: The agent class to use (e.g., `CodeActAgent`)
- `eval_limit`: Number of examples to evaluate (e.g., `500`)
- `max_iter`: Maximum number of iterations per task (e.g., `100`)
- `num_workers`: Number of parallel workers (e.g., `1`)
- `split`: Dataset split to use (e.g., `test`)
### Example:
```bash
bash ./evaluation/benchmarks/swe_bench/scripts/run_infer_interact.sh llm.claude-3-7-sonnet HEAD CodeActAgent 500 100 1 test
```
### Additional Environment Variables:
You can customize the behavior using these environment variables:
- `RUN_WITH_BROWSING`: Enable/disable web browsing (default: false)
- `USE_HINT_TEXT`: Enable/disable hint text (default: false)
- `EVAL_CONDENSER`: Specify a condenser configuration
- `EXP_NAME`: Add a custom experiment name to the output
- `N_RUNS`: Number of runs to perform (default: 1)
- `SKIP_RUNS`: Comma-separated list of run numbers to skip
## Evaluating Results
After running the benchmark, you can evaluate the results using `eval_infer.sh`:
```bash
./evaluation/benchmarks/swe_bench/scripts/eval_infer.sh <output_file> <instance_id> <dataset> <split>
```
### Parameters:
- `output_file`: Path to the output JSONL file
- `instance_id`: The specific instance ID to evaluate
- `dataset`: Dataset name (e.g., `cmu-lti/interactive-swe`)
- `split`: Dataset split (e.g., `test`)
### Example:
```bash
./evaluation/benchmarks/swe_bench/scripts/eval_infer.sh evaluation/evaluation_outputs/outputs/cmu-lti__interactive-swe-test/CodeActAgent/claude-3-7-sonnet-20250219_maxiter_100_N_v0.39.0-no-hint-run_1/output.jsonl sphinx-doc__sphinx-8721 cmu-lti/interactive-swe test
```
## Output Structure
The benchmark outputs are stored in the `evaluation/evaluation_outputs/outputs/` directory with the following structure:
```
evaluation/evaluation_outputs/outputs/
└── cmu-lti__interactive-swe-{split}/
└── {agent}/
└── {model}-{date}_maxiter_{max_iter}_N_{version}-{options}-run_{run_number}/
└── output.jsonl
```
Where:
- `{split}` is the dataset split (e.g., test)
- `{agent}` is the agent class name
- `{model}` is the model name
- `{date}` is the run date
- `{max_iter}` is the maximum iterations
- `{version}` is the OpenHands version
- `{options}` includes any additional options (e.g., no-hint, with-browsing)
- `{run_number}` is the run number

View File

@ -0,0 +1,411 @@
import asyncio
import json
import os
import pandas as pd
from datasets import load_dataset
from litellm import completion as litellm_completion
import openhands.agenthub
from evaluation.benchmarks.swe_bench.run_infer import (
AgentFinishedCritic,
complete_runtime,
filter_dataset,
get_config,
initialize_runtime,
)
from evaluation.benchmarks.swe_bench.run_infer import (
get_instruction as base_get_instruction,
)
from evaluation.utils.shared import (
EvalException,
EvalMetadata,
EvalOutput,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
get_llm_config_arg,
get_parser,
)
from openhands.core.config.condenser_config import NoOpCondenserConfig
from openhands.core.config.utils import get_condenser_config_arg
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import MessageAction
from openhands.events.serialization.event import event_from_dict, event_to_dict
from openhands.utils.async_utils import call_async_from_sync
USE_HINT_TEXT = os.environ.get('USE_HINT_TEXT', 'false').lower() == 'true'
USE_INSTANCE_IMAGE = os.environ.get('USE_INSTANCE_IMAGE', 'false').lower() == 'true'
RUN_WITH_BROWSING = os.environ.get('RUN_WITH_BROWSING', 'false').lower() == 'false'
class FakeUser:
def __init__(self, issue, hints, files):
self.system_message = f"""
You are a GitHub user reporting an issue. Here are the details of your issue and environment:
Issue: {issue}
Hints: {hints}
Files relative to your current directory: {files}
Your task is to respond to questions from a coder who is trying to solve your issue. The coder has a summarized version of the issue you have. Follow these rules:
1. If the coder asks a question that is directly related to the information in the issue you have, provide that information.
2. Always stay in character as a user reporting an issue, not as an AI assistant.
3. Keep your responses concise and to the point.
4. The coder has limited turns to solve the issue. Do not interact with the coder beyond 3 turns.
Respond with "I don't have that information" if the question is unrelated or you're unsure.
"""
self.chat_history = [{'role': 'system', 'content': self.system_message}]
self.turns = 0
# Get LLM config from config.toml
self.llm_config = get_llm_config_arg(
'llm.fake_user'
) # You can change 'fake_user' to any config name you want
def generate_reply(self, question):
if self.turns > 3:
return 'Please continue working on the task. Do NOT ask for more help.'
self.chat_history.append({'role': 'user', 'content': question.content})
response = litellm_completion(
model=self.llm_config.model,
messages=self.chat_history,
api_key=self.llm_config.api_key.get_secret_value(),
temperature=self.llm_config.temperature,
base_url=self.llm_config.base_url,
)
reply = response.choices[0].message.content
self.chat_history.append({'role': 'assistant', 'content': reply})
self.turns += 1
return reply
# Global variable for fake user
fake_user = None
def get_fake_user_response(state: State) -> str:
global fake_user
if not fake_user:
return 'Please continue working on the task.'
last_agent_message = state.get_last_agent_message()
if last_agent_message:
return fake_user.generate_reply(last_agent_message)
return 'Please continue working on the task.'
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': get_fake_user_response,
}
def get_instruction(instance: pd.Series, metadata: EvalMetadata) -> MessageAction:
instance_copy = instance.copy()
instance_copy.problem_statement = f'{instance.problem_statement}\n\nHints:\nThe user has not provided all the necessary details about the issue, and there are some hidden details that are helpful. Please ask the user specific questions using non-code commands to gather the relevant information that the user has to help you solve the issue. Ensure you have all the details you require to solve the issue.'
return base_get_instruction(instance_copy, metadata)
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
) -> EvalOutput:
config = get_config(instance, metadata)
global fake_user
original_issue = instance.original_issue
issue = str(original_issue)
fake_user = FakeUser(issue=issue, hints=instance.hints_text, files=instance.files)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir)
else:
logger.info(f'Starting evaluation for instance {instance.instance_id}.')
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
try:
initialize_runtime(runtime, instance, metadata)
message_action = get_instruction(instance, metadata)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=message_action,
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# if fatal error, throw EvalError to trigger re-run
if (
state
and state.last_error
and 'fatal error during agent execution' in state.last_error
and 'stuck in a loop' not in state.last_error
):
raise EvalException('Fatal error detected: ' + state.last_error)
# Get git patch
return_val = complete_runtime(runtime, instance)
git_patch = return_val['git_patch']
logger.info(
f'Got git diff for instance {instance.instance_id}:\n--------\n{git_patch}\n--------'
)
finally:
runtime.close()
# Prepare test result
test_result = {
'git_patch': git_patch,
}
if state is None:
raise ValueError('State should not be None.')
histories = [event_to_dict(event) for event in state.history]
metrics = state.metrics.get() if state.metrics else None
# Save the output
instruction = message_action.content
if message_action.image_urls:
instruction += (
'\n\n<image_urls>' + '\n'.join(message_action.image_urls) + '</image_urls>'
)
output = EvalOutput(
instance_id=instance.instance_id,
instruction=instruction,
instance=instance.to_dict(),
test_result=test_result,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
default='cmu-lti/interactive-swe',
help='dataset to evaluate on',
)
parser.add_argument(
'--split',
type=str,
default='test',
help='split to evaluate on',
)
args, _ = parser.parse_known_args()
# Load dataset from huggingface datasets
dataset = load_dataset(args.dataset, split=args.split)
swe_bench_tests = filter_dataset(dataset.to_pandas(), 'instance_id')
logger.info(
f'Loaded dataset {args.dataset} with split {args.split}: {len(swe_bench_tests)} tasks'
)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
llm_config.log_completions = True
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
# Get condenser config from environment variable
condenser_name = os.environ.get('EVAL_CONDENSER')
if condenser_name:
condenser_config = get_condenser_config_arg(condenser_name)
if condenser_config is None:
raise ValueError(
f'Could not find Condenser config: EVAL_CONDENSER={condenser_name}'
)
else:
# If no specific condenser config is provided via env var, default to NoOpCondenser
condenser_config = NoOpCondenserConfig()
logger.debug(
'No Condenser config provided via EVAL_CONDENSER, using NoOpCondenser.'
)
details = {'mode': 'interact'}
_agent_cls = openhands.agenthub.Agent.get_cls(args.agent_cls)
dataset_descrption = (
args.dataset.replace('/', '__') + '-' + args.split.replace('/', '__')
)
metadata = make_metadata(
llm_config,
dataset_descrption,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
details=details,
condenser_config=condenser_config,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
print(f'### OUTPUT FILE: {output_file} ###')
# Run evaluation in iterative mode:
# If a rollout fails to output AgentFinishAction, we will try again until it succeeds OR total 3 attempts have been made.
ITERATIVE_EVAL_MODE = (
os.environ.get('ITERATIVE_EVAL_MODE', 'false').lower() == 'true'
)
ITERATIVE_EVAL_MODE_MAX_ATTEMPTS = int(
os.environ.get('ITERATIVE_EVAL_MODE_MAX_ATTEMPTS', '3')
)
if not ITERATIVE_EVAL_MODE:
# load the dataset
instances = prepare_dataset(swe_bench_tests, output_file, args.eval_n_limit)
if len(instances) > 0 and not isinstance(
instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
):
for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
run_evaluation(
instances,
metadata,
output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
else:
critic = AgentFinishedCritic()
def get_cur_output_file_path(attempt: int) -> str:
return (
f'{output_file.removesuffix(".jsonl")}.critic_attempt_{attempt}.jsonl'
)
eval_ids = None
for attempt in range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1):
cur_output_file = get_cur_output_file_path(attempt)
logger.info(
f'Running evaluation with critic {critic.__class__.__name__} for attempt {attempt} of {ITERATIVE_EVAL_MODE_MAX_ATTEMPTS}.'
)
# For deterministic eval, we set temperature to 0.1 for (>1) attempt
# so hopefully we get slightly different results
if attempt > 1 and metadata.llm_config.temperature == 0:
logger.info(
f'Detected temperature is 0 for (>1) attempt {attempt}. Setting temperature to 0.1...'
)
metadata.llm_config.temperature = 0.1
# Load instances - at first attempt, we evaluate all instances
# On subsequent attempts, we only evaluate the instances that failed the previous attempt determined by critic
instances = prepare_dataset(
swe_bench_tests, cur_output_file, args.eval_n_limit, eval_ids=eval_ids
)
if len(instances) > 0 and not isinstance(
instances['PASS_TO_PASS'][instances['PASS_TO_PASS'].index[0]], str
):
for col in ['PASS_TO_PASS', 'FAIL_TO_PASS']:
instances[col] = instances[col].apply(lambda x: str(x))
# Run evaluation - but save them to cur_output_file
logger.info(
f'Evaluating {len(instances)} instances for attempt {attempt}...'
)
run_evaluation(
instances,
metadata,
cur_output_file,
args.eval_num_workers,
process_instance,
timeout_seconds=8
* 60
* 60, # 8 hour PER instance should be more than enough
max_retries=5,
)
# When eval is done, we update eval_ids to the instances that failed the current attempt
instances_failed = []
logger.info(
f'Use critic {critic.__class__.__name__} to check {len(instances)} instances for attempt {attempt}...'
)
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
try:
history = [
event_from_dict(event) for event in instance['history']
]
critic_result = critic.evaluate(
history, instance['test_result'].get('git_patch', '')
)
if not critic_result.success:
instances_failed.append(instance['instance_id'])
except Exception as e:
logger.error(
f'Error loading history for instance {instance["instance_id"]}: {e}'
)
instances_failed.append(instance['instance_id'])
logger.info(
f'{len(instances_failed)} instances failed the current attempt {attempt}: {instances_failed}'
)
eval_ids = instances_failed
# If no instances failed, we break
if len(instances_failed) == 0:
break
# Then we should aggregate the results from all attempts into the original output file
# and remove the intermediate files
logger.info(
'Aggregating results from all attempts into the original output file...'
)
fout = open(output_file, 'w')
added_instance_ids = set()
for attempt in reversed(range(1, ITERATIVE_EVAL_MODE_MAX_ATTEMPTS + 1)):
cur_output_file = get_cur_output_file_path(attempt)
if not os.path.exists(cur_output_file):
logger.warning(
f'Intermediate output file {cur_output_file} does not exist. Skipping...'
)
continue
with open(cur_output_file, 'r') as f:
for line in f:
instance = json.loads(line)
# Also make sure git_patch is not empty - otherwise we fall back to previous attempt (empty patch is worse than anything else)
if (
instance['instance_id'] not in added_instance_ids
and instance['test_result'].get('git_patch', '').strip()
):
fout.write(line)
added_instance_ids.add(instance['instance_id'])
logger.info(
f'Aggregated instances from {cur_output_file}. Total instances added so far: {len(added_instance_ids)}'
)
fout.close()
logger.info(
f'Done! Total {len(added_instance_ids)} instances added to {output_file}'
)

View File

@ -0,0 +1,131 @@
#!/usr/bin/env bash
set -eo pipefail
source "evaluation/utils/version_control.sh"
MODEL_CONFIG=$1
COMMIT_HASH=$2
AGENT=$3
EVAL_LIMIT=$4
MAX_ITER=$5
NUM_WORKERS=$6
SPLIT=$8
N_RUNS=$9
if [ -z "$NUM_WORKERS" ]; then
NUM_WORKERS=1
echo "Number of workers not specified, use default $NUM_WORKERS"
fi
checkout_eval_branch
if [ -z "$AGENT" ]; then
echo "Agent not specified, use default CodeActAgent"
AGENT="CodeActAgent"
fi
if [ -z "$MAX_ITER" ]; then
echo "MAX_ITER not specified, use default 100"
MAX_ITER=100
fi
if [ -z "$RUN_WITH_BROWSING" ]; then
echo "RUN_WITH_BROWSING not specified, use default false"
RUN_WITH_BROWSING=false
fi
if [ -z "$DATASET" ]; then
echo "DATASET not specified, use default cmu-lti/interactive-swe"
DATASET="cmu-lti/interactive-swe"
fi
if [ -z "$SPLIT" ]; then
echo "SPLIT not specified, use default test"
SPLIT="test"
fi
if [ -n "$EVAL_CONDENSER" ]; then
echo "Using Condenser Config: $EVAL_CONDENSER"
else
echo "No Condenser Config provided via EVAL_CONDENSER, use default (NoOpCondenser)."
fi
export RUN_WITH_BROWSING=$RUN_WITH_BROWSING
echo "RUN_WITH_BROWSING: $RUN_WITH_BROWSING"
get_openhands_version
echo "AGENT: $AGENT"
echo "OPENHANDS_VERSION: $OPENHANDS_VERSION"
echo "MODEL_CONFIG: $MODEL_CONFIG"
echo "DATASET: $DATASET"
echo "SPLIT: $SPLIT"
echo "MAX_ITER: $MAX_ITER"
echo "NUM_WORKERS: $NUM_WORKERS"
echo "COMMIT_HASH: $COMMIT_HASH"
echo "EVAL_CONDENSER: $EVAL_CONDENSER"
# Default to NOT use Hint
if [ -z "$USE_HINT_TEXT" ]; then
export USE_HINT_TEXT=false
fi
echo "USE_HINT_TEXT: $USE_HINT_TEXT"
EVAL_NOTE="$OPENHANDS_VERSION"
# if not using Hint, add -no-hint to the eval note
if [ "$USE_HINT_TEXT" = false ]; then
EVAL_NOTE="$EVAL_NOTE-no-hint"
fi
if [ "$RUN_WITH_BROWSING" = true ]; then
EVAL_NOTE="$EVAL_NOTE-with-browsing"
fi
if [ -n "$EXP_NAME" ]; then
EVAL_NOTE="$EVAL_NOTE-$EXP_NAME"
fi
# Add condenser config to eval note if provided
if [ -n "$EVAL_CONDENSER" ]; then
EVAL_NOTE="${EVAL_NOTE}-${EVAL_CONDENSER}"
fi
function run_eval() {
local eval_note="${1}"
COMMAND="poetry run python evaluation/benchmarks/swe_bench/run_infer_interact.py \
--agent-cls $AGENT \
--llm-config $MODEL_CONFIG \
--max-iterations $MAX_ITER \
--eval-num-workers $NUM_WORKERS \
--eval-note $eval_note \
--dataset $DATASET \
--split $SPLIT"
if [ -n "$EVAL_LIMIT" ]; then
echo "EVAL_LIMIT: $EVAL_LIMIT"
COMMAND="$COMMAND --eval-n-limit $EVAL_LIMIT"
fi
# Run the command
eval $COMMAND
}
unset SANDBOX_ENV_GITHUB_TOKEN # prevent the agent from using the github token to push
if [ -z "$N_RUNS" ]; then
N_RUNS=1
echo "N_RUNS not specified, use default $N_RUNS"
fi
# Skip runs if the run number is in the SKIP_RUNS list
# read from env variable SKIP_RUNS as a comma separated list of run numbers
SKIP_RUNS=(${SKIP_RUNS//,/ })
for i in $(seq 1 $N_RUNS); do
if [[ " ${SKIP_RUNS[@]} " =~ " $i " ]]; then
echo "Skipping run $i"
continue
fi
current_eval_note="$EVAL_NOTE-run_$i"
echo "EVAL_NOTE: $current_eval_note"
run_eval $current_eval_note
done
checkout_original_branch