Document config (#1929)

* add more docstrings for config

* fix typo

* Update opendevin/core/config.py

Co-authored-by: Aleksandar <isavitaisa@gmail.com>

---------

Co-authored-by: Aleksandar <isavitaisa@gmail.com>
This commit is contained in:
Engel Nyst 2024-05-21 09:28:20 +02:00 committed by GitHub
parent 99651e3249
commit 04094e4201
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 85 additions and 1 deletions

View File

@ -34,7 +34,7 @@
<div align="center">
<img src="./docs/static/img/logo.png" alt="Logo" width="200" height="200">
<h1 align="center">OpenDevin: Code Less, Make More</h1>
<a href="https://opendevin.github.io/OpenDevin/"><img src="https://img.shields.io/badge/Documenation-OpenDevin-blue?logo=googledocs&logoColor=white&style=for-the-badge" alt="Check out the documentation"></a>
<a href="https://opendevin.github.io/OpenDevin/"><img src="https://img.shields.io/badge/Documentation-OpenDevin-blue?logo=googledocs&logoColor=white&style=for-the-badge" alt="Check out the documentation"></a>
</div>
<hr>

View File

@ -19,6 +19,32 @@ load_dotenv()
@dataclass
class LLMConfig(metaclass=Singleton):
"""
Configuration for the LLM model.
Attributes:
model: The model to use.
api_key: The API key to use.
base_url: The base URL for the API. This is necessary for local LLMs. It is also used for Azure embeddings.
api_version: The version of the API.
embedding_model: The embedding model to use.
embedding_base_url: The base URL for the embedding API.
embedding_deployment_name: The name of the deployment for the embedding API. This is used for Azure OpenAI.
aws_access_key_id: The AWS access key ID.
aws_secret_access_key: The AWS secret access key.
aws_region_name: The AWS region name.
num_retries: The number of retries to attempt.
retry_min_wait: The minimum time to wait between retries, in seconds. This is exponential backoff minimum. For models with very low limits, this can be set to 15-20.
retry_max_wait: The maximum time to wait between retries, in seconds. This is exponential backoff maximum.
timeout: The timeout for the API.
max_chars: The maximum number of characters to send to and receive from the API. This is a fallback for token counting, which doesn't work in all cases.
temperature: The temperature for the API.
top_p: The top p for the API.
custom_llm_provider: The custom LLM provider to use. This is undocumented in opendevin, and normally not used. It is documented on the litellm side.
max_input_tokens: The maximum number of input tokens. Note that this is currently unused, and the value at runtime is actually the total tokens in OpenAI (e.g. 128,000 tokens for GPT-4).
max_output_tokens: The maximum number of output tokens. This is sent to the LLM.
"""
model: str = 'gpt-3.5-turbo'
api_key: str | None = None
base_url: str | None = None
@ -52,6 +78,15 @@ class LLMConfig(metaclass=Singleton):
@dataclass
class AgentConfig(metaclass=Singleton):
"""
Configuration for the agent.
Attributes:
name: The name of the agent.
memory_enabled: Whether long-term memory (embeddings) is enabled.
memory_max_threads: The maximum number of threads indexing at the same time for embeddings.
"""
name: str = 'CodeActAgent'
memory_enabled: bool = False
memory_max_threads: int = 2
@ -68,6 +103,35 @@ class AgentConfig(metaclass=Singleton):
@dataclass
class AppConfig(metaclass=Singleton):
"""
Configuration for the app.
Attributes:
llm: The LLM configuration.
agent: The agent configuration.
runtime: The runtime environment.
file_store: The file store to use.
file_store_path: The path to the file store.
workspace_base: The base path for the workspace. Defaults to ./workspace as an absolute path.
workspace_mount_path: The path to mount the workspace. This is set to the workspace base by default.
workspace_mount_path_in_sandbox: The path to mount the workspace in the sandbox. Defaults to /workspace.
workspace_mount_rewrite: The path to rewrite the workspace mount path to.
cache_dir: The path to the cache directory. Defaults to /tmp/cache.
sandbox_container_image: The container image to use for the sandbox.
run_as_devin: Whether to run as devin.
max_iterations: The maximum number of iterations.
e2b_api_key: The E2B API key.
sandbox_type: The type of sandbox to use. Options are: ssh, exec, e2b, local.
use_host_network: Whether to use the host network.
ssh_hostname: The SSH hostname.
disable_color: Whether to disable color. For terminals that don't support color.
sandbox_user_id: The user ID for the sandbox.
sandbox_timeout: The timeout for the sandbox.
github_token: The GitHub token.
debug: Whether to enable debugging.
enable_auto_lint: Whether to enable auto linting. This is False by default, for regular runs of the app. For evaluation, please set this to True.
"""
llm: LLMConfig = field(default_factory=LLMConfig)
agent: AgentConfig = field(default_factory=AgentConfig)
runtime: str = 'server'
@ -306,6 +370,26 @@ finalize_config(config)
def get_llm_config_arg(llm_config_arg: str):
"""
Get a group of llm settings from the config file.
A group in config.toml can look like this:
```
[gpt-3.5-for-eval]
model = 'gpt-3.5-turbo'
api_key = '...'
temperature = 0.5
num_retries = 10
...
```
The user-defined group name, like "gpt-3.5-for-eval", is the argument to this function. The function will load the LLMConfig object
with the settings of this group, from the config file, and set it as the LLMConfig object for the app.
Args:
llm_config_arg: The group of llm settings to get from the config.toml file.
Returns:
LLMConfig: The LLMConfig object with the settings from the config file.
"""
# keep only the name, just in case