mirror of
https://gitee.com/zhijiantianya/ruoyi-vue-pro.git
synced 2025-12-26 00:26:20 +08:00
feat:【ai】增加智能文档切片策略,支持自动识别 Markdown QA 和语义化切分「代码优化」
This commit is contained in:
parent
4af529cb97
commit
ed136ff022
2
pom.xml
2
pom.xml
@ -23,7 +23,7 @@
|
||||
<!-- <module>yudao-module-mall</module>-->
|
||||
<!-- <module>yudao-module-crm</module>-->
|
||||
<!-- <module>yudao-module-erp</module>-->
|
||||
<module>yudao-module-ai</module>
|
||||
<!-- <module>yudao-module-ai</module>-->
|
||||
<!-- <module>yudao-module-iot</module>-->
|
||||
</modules>
|
||||
|
||||
|
||||
@ -50,16 +50,4 @@ public enum AiDocumentSplitStrategyEnum {
|
||||
*/
|
||||
private final String name;
|
||||
|
||||
/**
|
||||
* 根据代码获取枚举
|
||||
*/
|
||||
public static AiDocumentSplitStrategyEnum fromCode(String code) {
|
||||
for (AiDocumentSplitStrategyEnum strategy : values()) {
|
||||
if (strategy.getCode().equals(code)) {
|
||||
return strategy;
|
||||
}
|
||||
}
|
||||
return AUTO; // 默认返回自动识别
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -107,11 +107,8 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
if (StrUtil.isEmpty(segment.getText())) {
|
||||
return null;
|
||||
}
|
||||
return new AiKnowledgeSegmentDO()
|
||||
.setKnowledgeId(documentDO.getKnowledgeId())
|
||||
.setDocumentId(documentId)
|
||||
.setContent(segment.getText())
|
||||
.setContentLength(segment.getText().length())
|
||||
return new AiKnowledgeSegmentDO().setKnowledgeId(documentDO.getKnowledgeId()).setDocumentId(documentId)
|
||||
.setContent(segment.getText()).setContentLength(segment.getText().length())
|
||||
.setVectorId(AiKnowledgeSegmentDO.VECTOR_ID_EMPTY)
|
||||
.setTokens(tokenCountEstimator.estimate(segment.getText()))
|
||||
.setStatus(CommonStatusEnum.ENABLE.getStatus());
|
||||
@ -302,13 +299,12 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
// 1. 读取 URL 内容
|
||||
String content = knowledgeDocumentService.readUrl(url);
|
||||
|
||||
// 2. 自动检测文档类型并选择策略
|
||||
// 2.1 自动检测文档类型并选择策略
|
||||
AiDocumentSplitStrategyEnum strategy = detectDocumentStrategy(content, url);
|
||||
|
||||
// 3. 文档切片
|
||||
// 2.2 文档切片
|
||||
List<Document> documentSegments = splitContentByStrategy(content, segmentMaxTokens, strategy, url);
|
||||
|
||||
// 4. 转换为段落对象
|
||||
// 3. 转换为段落对象
|
||||
return convertList(documentSegments, segment -> {
|
||||
if (StrUtil.isEmpty(segment.getText())) {
|
||||
return null;
|
||||
@ -352,6 +348,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
* @param url 文档 URL(用于自动检测文件类型)
|
||||
* @return 切片后的文档列表
|
||||
*/
|
||||
@SuppressWarnings("EnhancedSwitchMigration")
|
||||
private List<Document> splitContentByStrategy(String content, Integer segmentMaxTokens,
|
||||
AiDocumentSplitStrategyEnum strategy, String url) {
|
||||
// 自动检测策略
|
||||
@ -359,7 +356,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
strategy = detectDocumentStrategy(content, url);
|
||||
log.info("[splitContentByStrategy][自动检测到文档策略: {}]", strategy.getName());
|
||||
}
|
||||
|
||||
// 根据策略切分
|
||||
TextSplitter textSplitter;
|
||||
switch (strategy) {
|
||||
case MARKDOWN_QA:
|
||||
@ -376,7 +373,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
textSplitter = buildTokenTextSplitter(segmentMaxTokens);
|
||||
break;
|
||||
}
|
||||
|
||||
// 执行切分
|
||||
return textSplitter.apply(Collections.singletonList(new Document(content)));
|
||||
}
|
||||
|
||||
@ -391,17 +388,14 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
if (StrUtil.isEmpty(content)) {
|
||||
return AiDocumentSplitStrategyEnum.TOKEN;
|
||||
}
|
||||
|
||||
// 1. 检测 Markdown QA 格式
|
||||
if (isMarkdownQaFormat(content, url)) {
|
||||
return AiDocumentSplitStrategyEnum.MARKDOWN_QA;
|
||||
}
|
||||
|
||||
// 2. 检测普通 Markdown 文档
|
||||
if (isMarkdownDocument(url)) {
|
||||
return AiDocumentSplitStrategyEnum.SEMANTIC;
|
||||
}
|
||||
|
||||
// 3. 默认使用语义切分(比 Token 切分更智能)
|
||||
return AiDocumentSplitStrategyEnum.SEMANTIC;
|
||||
}
|
||||
@ -421,16 +415,14 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
.filter(line -> line.trim().startsWith("## "))
|
||||
.count();
|
||||
|
||||
// 至少包含 2 个二级标题才认为是 QA 格式
|
||||
// 要求一:至少包含 2 个二级标题才认为是 QA 格式
|
||||
if (h2Count < 2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 检查标题占比(QA 文档标题行数相对较多)
|
||||
// 要求二:检查标题占比(QA 文档标题行数相对较多),如果二级标题占比超过 10%,认为是 QA 格式
|
||||
long totalLines = content.lines().count();
|
||||
double h2Ratio = (double) h2Count / totalLines;
|
||||
|
||||
// 如果二级标题占比超过 10%,认为是 QA 格式
|
||||
return h2Ratio > 0.1;
|
||||
}
|
||||
|
||||
@ -438,7 +430,7 @@ public class AiKnowledgeSegmentServiceImpl implements AiKnowledgeSegmentService
|
||||
* 检测是否为 Markdown 文档
|
||||
*/
|
||||
private boolean isMarkdownDocument(String url) {
|
||||
return StrUtil.isNotEmpty(url) && url.toLowerCase().endsWith(".md");
|
||||
return StrUtil.endWithAnyIgnoreCase(url, ".md", ".markdown");
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
package cn.iocoder.yudao.module.ai.service.knowledge.splitter;
|
||||
|
||||
import cn.hutool.core.collection.CollUtil;
|
||||
import cn.hutool.core.util.StrUtil;
|
||||
import lombok.AllArgsConstructor;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.ai.transformer.splitter.TextSplitter;
|
||||
|
||||
@ -24,6 +26,7 @@ import java.util.regex.Pattern;
|
||||
* @author runzhen
|
||||
*/
|
||||
@Slf4j
|
||||
@SuppressWarnings("SizeReplaceableByIsEmpty")
|
||||
public class MarkdownQaSplitter extends TextSplitter {
|
||||
|
||||
/**
|
||||
@ -62,41 +65,38 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
|
||||
List<String> result = new ArrayList<>();
|
||||
|
||||
// 解析 QA 对
|
||||
List<QaPair> qaPairs = parseQaPairs(text);
|
||||
|
||||
if (qaPairs.isEmpty()) {
|
||||
if (CollUtil.isEmpty(qaPairs)) {
|
||||
// 如果没有识别到 QA 格式,按段落切分
|
||||
return fallbackSplit(text);
|
||||
}
|
||||
|
||||
// 处理每个 QA 对
|
||||
List<String> result = new ArrayList<>();
|
||||
for (QaPair qaPair : qaPairs) {
|
||||
result.addAll(splitQaPair(qaPair));
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* 解析 Markdown QA 对
|
||||
*
|
||||
* @param content 文本内容
|
||||
* @return QA 对列表
|
||||
*/
|
||||
private List<QaPair> parseQaPairs(String content) {
|
||||
// 找到所有二级标题位置
|
||||
List<QaPair> qaPairs = new ArrayList<>();
|
||||
Matcher matcher = H2_PATTERN.matcher(content);
|
||||
|
||||
List<Integer> headingPositions = new ArrayList<>();
|
||||
List<String> questions = new ArrayList<>();
|
||||
|
||||
// 找到所有二级标题位置
|
||||
Matcher matcher = H2_PATTERN.matcher(content);
|
||||
while (matcher.find()) {
|
||||
headingPositions.add(matcher.start());
|
||||
questions.add(matcher.group(1).trim());
|
||||
}
|
||||
|
||||
if (headingPositions.isEmpty()) {
|
||||
if (CollUtil.isEmpty(headingPositions)) {
|
||||
return qaPairs;
|
||||
}
|
||||
|
||||
@ -106,55 +106,51 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
int end = (i + 1 < headingPositions.size())
|
||||
? headingPositions.get(i + 1)
|
||||
: content.length();
|
||||
|
||||
String qaText = content.substring(start, end).trim();
|
||||
String question = questions.get(i);
|
||||
|
||||
// 提取答案部分(去掉问题标题)
|
||||
String answer = qaText.substring(qaText.indexOf('\n') + 1).trim();
|
||||
|
||||
qaPairs.add(new QaPair(question, answer, qaText));
|
||||
}
|
||||
|
||||
return qaPairs;
|
||||
}
|
||||
|
||||
/**
|
||||
* 切分单个 QA 对
|
||||
*
|
||||
* @param qaPair QA 对
|
||||
* @return 切分后的文本片段列表
|
||||
*/
|
||||
private List<String> splitQaPair(QaPair qaPair) {
|
||||
// 如果整个 QA 对不超过限制,保持完整
|
||||
List<String> chunks = new ArrayList<>();
|
||||
|
||||
String fullQa = qaPair.fullText;
|
||||
int qaTokens = tokenEstimator.estimate(fullQa);
|
||||
|
||||
// 如果整个 QA 对不超过限制,保持完整
|
||||
if (qaTokens <= chunkSize) {
|
||||
chunks.add(fullQa);
|
||||
return chunks;
|
||||
}
|
||||
|
||||
// 长答案需要切分
|
||||
log.debug("QA 对超过 Token 限制 ({} > {}),开始智能切分: {}",
|
||||
qaTokens, chunkSize, qaPair.question);
|
||||
|
||||
log.debug("QA 对超过 Token 限制 ({} > {}),开始智能切分: {}", qaTokens, chunkSize, qaPair.question);
|
||||
List<String> answerChunks = splitLongAnswer(qaPair.answer, qaPair.question);
|
||||
|
||||
for (String answerChunk : answerChunks) {
|
||||
// 每个片段都包含完整问题
|
||||
String chunkText = "## " + qaPair.question + "\n" + answerChunk;
|
||||
chunks.add(chunkText);
|
||||
}
|
||||
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 切分长答案
|
||||
*
|
||||
* @param answer 答案文本
|
||||
* @param question 问题文本
|
||||
* @return 切分后的答案片段列表
|
||||
*/
|
||||
private List<String> splitLongAnswer(String answer, String question) {
|
||||
List<String> chunks = new ArrayList<>();
|
||||
|
||||
// 预留问题的 Token 空间
|
||||
String questionHeader = "## " + question + "\n";
|
||||
int questionTokens = tokenEstimator.estimate(questionHeader);
|
||||
@ -162,17 +158,13 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
|
||||
// 先按段落切分
|
||||
String[] paragraphs = answer.split(PARAGRAPH_SEPARATOR);
|
||||
|
||||
StringBuilder currentChunk = new StringBuilder();
|
||||
int currentTokens = 0;
|
||||
|
||||
for (String paragraph : paragraphs) {
|
||||
if (StrUtil.isEmpty(paragraph)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int paragraphTokens = tokenEstimator.estimate(paragraph);
|
||||
|
||||
// 如果单个段落就超过限制,需要按句子切分
|
||||
if (paragraphTokens > availableTokens) {
|
||||
// 先保存当前块
|
||||
@ -181,19 +173,105 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
|
||||
// 按句子切分长段落
|
||||
chunks.addAll(splitLongParagraph(paragraph, availableTokens));
|
||||
continue;
|
||||
}
|
||||
|
||||
// 如果加上这个段落会超过限制
|
||||
if (currentTokens + paragraphTokens > availableTokens && currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
if (currentChunk.length() > 0) {
|
||||
currentChunk.append("\n\n");
|
||||
}
|
||||
// 添加段落
|
||||
currentChunk.append(paragraph);
|
||||
currentTokens += paragraphTokens;
|
||||
}
|
||||
|
||||
// 添加最后一块
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
}
|
||||
return CollUtil.isEmpty(chunks) ? Collections.singletonList(answer) : chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 切分长段落(按句子)
|
||||
*
|
||||
* @param paragraph 段落文本
|
||||
* @param availableTokens 可用的 Token 数
|
||||
* @return 切分后的文本片段列表
|
||||
*/
|
||||
private List<String> splitLongParagraph(String paragraph, int availableTokens) {
|
||||
// 按句子切分
|
||||
List<String> chunks = new ArrayList<>();
|
||||
String[] sentences = SENTENCE_PATTERN.split(paragraph);
|
||||
|
||||
// 按句子累积切分
|
||||
StringBuilder currentChunk = new StringBuilder();
|
||||
int currentTokens = 0;
|
||||
for (String sentence : sentences) {
|
||||
if (StrUtil.isEmpty(sentence)) {
|
||||
continue;
|
||||
}
|
||||
int sentenceTokens = tokenEstimator.estimate(sentence);
|
||||
// 如果单个句子就超过限制,强制切分
|
||||
if (sentenceTokens > availableTokens) {
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
chunks.add(sentence.trim());
|
||||
continue;
|
||||
}
|
||||
// 如果加上这个句子会超过限制
|
||||
if (currentTokens + sentenceTokens > availableTokens && currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
// 添加句子
|
||||
currentChunk.append(sentence);
|
||||
currentTokens += sentenceTokens;
|
||||
}
|
||||
|
||||
// 添加最后一块
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
}
|
||||
return chunks.isEmpty() ? Collections.singletonList(paragraph) : chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 降级切分策略(当未识别到 QA 格式时)
|
||||
*
|
||||
* @param content 文本内容
|
||||
* @return 切分后的文本片段列表
|
||||
*/
|
||||
private List<String> fallbackSplit(String content) {
|
||||
// 按段落切分
|
||||
List<String> chunks = new ArrayList<>();
|
||||
String[] paragraphs = content.split(PARAGRAPH_SEPARATOR);
|
||||
|
||||
// 按段落累积切分
|
||||
StringBuilder currentChunk = new StringBuilder();
|
||||
int currentTokens = 0;
|
||||
for (String paragraph : paragraphs) {
|
||||
if (StrUtil.isEmpty(paragraph)) {
|
||||
continue;
|
||||
}
|
||||
int paragraphTokens = tokenEstimator.estimate(paragraph);
|
||||
// 如果加上这个段落会超过限制
|
||||
if (currentTokens + paragraphTokens > chunkSize && currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
// 添加段落
|
||||
if (currentChunk.length() > 0) {
|
||||
currentChunk.append("\n\n");
|
||||
}
|
||||
@ -205,112 +283,28 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
}
|
||||
|
||||
return chunks.isEmpty() ? Collections.singletonList(answer) : chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 切分长段落(按句子)
|
||||
*/
|
||||
private List<String> splitLongParagraph(String paragraph, int availableTokens) {
|
||||
List<String> chunks = new ArrayList<>();
|
||||
String[] sentences = SENTENCE_PATTERN.split(paragraph);
|
||||
|
||||
StringBuilder currentChunk = new StringBuilder();
|
||||
int currentTokens = 0;
|
||||
|
||||
for (String sentence : sentences) {
|
||||
if (StrUtil.isEmpty(sentence)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int sentenceTokens = tokenEstimator.estimate(sentence);
|
||||
|
||||
// 如果单个句子就超过限制,强制切分
|
||||
if (sentenceTokens > availableTokens) {
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
chunks.add(sentence.trim());
|
||||
continue;
|
||||
}
|
||||
|
||||
if (currentTokens + sentenceTokens > availableTokens && currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
|
||||
currentChunk.append(sentence);
|
||||
currentTokens += sentenceTokens;
|
||||
}
|
||||
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
}
|
||||
|
||||
return chunks.isEmpty() ? Collections.singletonList(paragraph) : chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 降级切分策略(当未识别到 QA 格式时)
|
||||
*/
|
||||
private List<String> fallbackSplit(String content) {
|
||||
List<String> chunks = new ArrayList<>();
|
||||
String[] paragraphs = content.split(PARAGRAPH_SEPARATOR);
|
||||
|
||||
StringBuilder currentChunk = new StringBuilder();
|
||||
int currentTokens = 0;
|
||||
|
||||
for (String paragraph : paragraphs) {
|
||||
if (StrUtil.isEmpty(paragraph)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int paragraphTokens = tokenEstimator.estimate(paragraph);
|
||||
|
||||
if (currentTokens + paragraphTokens > chunkSize && currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
currentChunk = new StringBuilder();
|
||||
currentTokens = 0;
|
||||
}
|
||||
|
||||
if (currentChunk.length() > 0) {
|
||||
currentChunk.append("\n\n");
|
||||
}
|
||||
currentChunk.append(paragraph);
|
||||
currentTokens += paragraphTokens;
|
||||
}
|
||||
|
||||
if (currentChunk.length() > 0) {
|
||||
chunks.add(currentChunk.toString().trim());
|
||||
}
|
||||
|
||||
return chunks.isEmpty() ? Collections.singletonList(content) : chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* QA 对数据结构
|
||||
*/
|
||||
@AllArgsConstructor
|
||||
private static class QaPair {
|
||||
|
||||
String question;
|
||||
String answer;
|
||||
String fullText;
|
||||
|
||||
QaPair(String question, String answer, String fullText) {
|
||||
this.question = question;
|
||||
this.answer = answer;
|
||||
this.fullText = fullText;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Token 估算器接口
|
||||
*/
|
||||
public interface TokenEstimator {
|
||||
|
||||
int estimate(String text);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@ -319,6 +313,7 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
* 英文:1 单词 ≈ 1.3 Token
|
||||
*/
|
||||
private static class SimpleTokenEstimator implements TokenEstimator {
|
||||
|
||||
@Override
|
||||
public int estimate(String text) {
|
||||
if (StrUtil.isEmpty(text)) {
|
||||
@ -327,14 +322,12 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
|
||||
int chineseChars = 0;
|
||||
int englishWords = 0;
|
||||
|
||||
// 简单统计中英文
|
||||
for (char c : text.toCharArray()) {
|
||||
if (c >= 0x4E00 && c <= 0x9FA5) {
|
||||
chineseChars++;
|
||||
}
|
||||
}
|
||||
|
||||
// 英文单词估算
|
||||
String[] words = text.split("\\s+");
|
||||
for (String word : words) {
|
||||
@ -342,8 +335,8 @@ public class MarkdownQaSplitter extends TextSplitter {
|
||||
englishWords++;
|
||||
}
|
||||
}
|
||||
|
||||
return chineseChars + (int) (englishWords * 1.3);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@ -8,6 +8,7 @@ import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.regex.Matcher;
|
||||
import java.util.regex.Pattern;
|
||||
|
||||
/**
|
||||
@ -72,12 +73,14 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
if (StrUtil.isEmpty(text)) {
|
||||
return Collections.emptyList();
|
||||
}
|
||||
|
||||
return splitTextRecursive(text);
|
||||
}
|
||||
|
||||
/**
|
||||
* 切分文本(递归策略)
|
||||
*
|
||||
* @param text 待切分文本
|
||||
* @return 切分后的文本块列表
|
||||
*/
|
||||
private List<String> splitTextRecursive(String text) {
|
||||
List<String> chunks = new ArrayList<>();
|
||||
@ -92,7 +95,6 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
// 尝试按不同分隔符切分
|
||||
List<String> splits = null;
|
||||
String usedSeparator = null;
|
||||
|
||||
for (String separator : PARAGRAPH_SEPARATORS) {
|
||||
if (text.contains(separator)) {
|
||||
splits = Arrays.asList(text.split(Pattern.quote(separator)));
|
||||
@ -109,18 +111,20 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
|
||||
// 合并小片段
|
||||
chunks = mergeSplits(splits, usedSeparator);
|
||||
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 按句子切分
|
||||
*
|
||||
* @param text 待切分文本
|
||||
* @return 句子列表
|
||||
*/
|
||||
private List<String> splitBySentences(String text) {
|
||||
// 使用正则表达式匹配句子结束位置
|
||||
List<String> sentences = new ArrayList<>();
|
||||
int lastEnd = 0;
|
||||
|
||||
java.util.regex.Matcher matcher = SENTENCE_END_PATTERN.matcher(text);
|
||||
Matcher matcher = SENTENCE_END_PATTERN.matcher(text);
|
||||
while (matcher.find()) {
|
||||
String sentence = text.substring(lastEnd, matcher.end()).trim();
|
||||
if (StrUtil.isNotEmpty(sentence)) {
|
||||
@ -136,12 +140,15 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
sentences.add(remaining);
|
||||
}
|
||||
}
|
||||
|
||||
return sentences.isEmpty() ? Collections.singletonList(text) : sentences;
|
||||
}
|
||||
|
||||
/**
|
||||
* 合并切分后的小片段
|
||||
*
|
||||
* @param splits 切分后的片段列表
|
||||
* @param separator 片段间的分隔符
|
||||
* @return 合并后的文本块列表
|
||||
*/
|
||||
private List<String> mergeSplits(List<String> splits, String separator) {
|
||||
List<String> chunks = new ArrayList<>();
|
||||
@ -152,9 +159,7 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
if (StrUtil.isEmpty(split)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int splitTokens = tokenEstimator.estimate(split);
|
||||
|
||||
// 如果单个片段就超过限制,进一步递归切分
|
||||
if (splitTokens > chunkSize) {
|
||||
// 先保存当前累积的块
|
||||
@ -164,7 +169,6 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
currentChunks.clear();
|
||||
currentLength = 0;
|
||||
}
|
||||
|
||||
// 递归切分大片段
|
||||
if (!separator.isEmpty()) {
|
||||
// 如果是段落分隔符,尝试按句子切分
|
||||
@ -175,10 +179,8 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
// 计算加上分隔符的 Token 数
|
||||
int separatorTokens = StrUtil.isEmpty(separator) ? 0 : tokenEstimator.estimate(separator);
|
||||
|
||||
// 如果加上这个片段会超过限制
|
||||
if (!currentChunks.isEmpty() && currentLength + splitTokens + separatorTokens > chunkSize) {
|
||||
// 保存当前块
|
||||
@ -189,7 +191,7 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
currentChunks = getOverlappingChunks(currentChunks, separator);
|
||||
currentLength = estimateTokens(currentChunks, separator);
|
||||
}
|
||||
|
||||
// 添加当前片段
|
||||
currentChunks.add(split);
|
||||
currentLength += splitTokens + separatorTokens;
|
||||
}
|
||||
@ -199,39 +201,43 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
String chunkText = String.join(separator, currentChunks);
|
||||
chunks.add(chunkText.trim());
|
||||
}
|
||||
|
||||
return chunks;
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取重叠的片段(用于保持上下文)
|
||||
*
|
||||
* @param chunks 当前片段列表
|
||||
* @param separator 片段间的分隔符
|
||||
* @return 重叠的片段列表
|
||||
*/
|
||||
private List<String> getOverlappingChunks(List<String> chunks, String separator) {
|
||||
if (chunkOverlap == 0 || chunks.isEmpty()) {
|
||||
return new ArrayList<>();
|
||||
}
|
||||
|
||||
// 从后往前取片段,直到达到重叠大小
|
||||
List<String> overlapping = new ArrayList<>();
|
||||
int tokens = 0;
|
||||
|
||||
// 从后往前取片段,直到达到重叠大小
|
||||
for (int i = chunks.size() - 1; i >= 0; i--) {
|
||||
String chunk = chunks.get(i);
|
||||
int chunkTokens = tokenEstimator.estimate(chunk);
|
||||
|
||||
if (tokens + chunkTokens > chunkOverlap) {
|
||||
break;
|
||||
}
|
||||
|
||||
// 添加到重叠列表前端
|
||||
overlapping.add(0, chunk);
|
||||
tokens += chunkTokens + (StrUtil.isEmpty(separator) ? 0 : tokenEstimator.estimate(separator));
|
||||
}
|
||||
|
||||
return overlapping;
|
||||
}
|
||||
|
||||
/**
|
||||
* 估算片段列表的总 Token 数
|
||||
*
|
||||
* @param chunks 片段列表
|
||||
* @param separator 片段间的分隔符
|
||||
* @return 总 Token 数
|
||||
*/
|
||||
private int estimateTokens(List<String> chunks, String separator) {
|
||||
int total = 0;
|
||||
@ -246,17 +252,18 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
|
||||
/**
|
||||
* 强制切分长文本(当语义切分失败时)
|
||||
*
|
||||
* @param text 待切分文本
|
||||
* @return 切分后的文本块列表
|
||||
*/
|
||||
private List<String> forceSplitLongText(String text) {
|
||||
List<String> chunks = new ArrayList<>();
|
||||
int charsPerChunk = (int) (chunkSize * 0.8); // 保守估计
|
||||
|
||||
for (int i = 0; i < text.length(); i += charsPerChunk) {
|
||||
int end = Math.min(i + charsPerChunk, text.length());
|
||||
String chunk = text.substring(i, end);
|
||||
chunks.add(chunk.trim());
|
||||
}
|
||||
|
||||
log.warn("文本过长,已强制按字符切分,可能影响语义完整性");
|
||||
return chunks;
|
||||
}
|
||||
@ -265,6 +272,7 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
* 简单的 Token 估算器实现
|
||||
*/
|
||||
private static class SimpleTokenEstimator implements MarkdownQaSplitter.TokenEstimator {
|
||||
|
||||
@Override
|
||||
public int estimate(String text) {
|
||||
if (StrUtil.isEmpty(text)) {
|
||||
@ -273,21 +281,21 @@ public class SemanticTextSplitter extends TextSplitter {
|
||||
|
||||
int chineseChars = 0;
|
||||
int englishWords = 0;
|
||||
|
||||
// 简单统计中英文
|
||||
for (char c : text.toCharArray()) {
|
||||
if (c >= 0x4E00 && c <= 0x9FA5) {
|
||||
chineseChars++;
|
||||
}
|
||||
}
|
||||
|
||||
// 英文单词估算
|
||||
String[] words = text.split("\\s+");
|
||||
for (String word : words) {
|
||||
if (word.matches(".*[a-zA-Z].*")) {
|
||||
englishWords++;
|
||||
}
|
||||
}
|
||||
|
||||
return chineseChars + (int) (englishWords * 1.3);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user